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Abstract

Inspection methods are a kind of engineering problem solving based
on the recognition and use of standard forms or clichés. Examples are
given of program analysis, program synthesis and program validation
by inspection. A formalism, called the Plan Calculus, is defined and
used to represent programming clichés in a convenient, canonical, and
programming-language independent fashion.
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2 INTRODUCTION

1 Introduction

In textbooks, or in explanations given by experienced engineers and mathe-
maticians, we often encounter the phrase “by inspection the soiutionis ...."”
This paper begins to develop an account of the role of inspection methods in
engineering problem solving generally, and in programming specificaily. An
important motivation underlying this work is the belief that, in order to fur-
ther automate the programming process, we must have better comiputational
models of the problem solving methods used by programmers.

The outline of the paper is as follows. In Section 1, engineering proh-
lem solving is introduced as a domain of study and is compared with other
problem solving domains. Within the engineering context, two very different
kinds of problem solving method are contrasted: inspection methods and
uniform general methods.

In Section 2, the concept of inspection methods in programming is de-
veloped in detail via an extended scenario of analysis by inspection. This
section also includes short examples of synthesis by inspection and valida-
tion by inspection, which illustrate the shared knowledge (clichés) underlying
inspection methods.

Section 3 defines a formalism, called the Plan Calculus, which is used to
codify the knowledge underlying inspection methods in programming in a
convenient, canonical, and programming-language independent fashion.

Section 4 concludes the paper with a discussion of the relationship of
the Plan Calculus to programming languages and other formalisms, current
limitations of the Plan Calculus, and further work.

A companion paper [39] describes an initial library of common program
forms, which has been compiled using the Plan Calculus, and its use in
automated systems for analysis and synthesis of programs.

1.1 Engineering Problem Solving

Programming is viewed here as a kind of enginecring activity. This is the
appropriate view for understanding the programming involved in the devel-
opment large software systems.! In this context, a first question to ask is:
What properties do different kinds of engineering have in common?

! The other major school of thought is to view programming as a kind of mathematical
activity, which is more appropriate for understanding the development of algorithins.
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UNIFORM GENERAL METHODS 3

The first common property of engineering domains is the existence of a
set of standardized, well-understood, primitive building blocks. For exam-
ple, in electrical engineering all circuits are made up at the lowest level of
resistances, capacitances, inductances, and so on. Similarly, in mechanical
engineering, all devices eventually come down to the primitive mechanisms of
lever, gear, rod, pulley, and so on. In software engineering, all programs can
be constructed out of assignment, conditional, and recursion. This feature
of engineering domains distinguishes them from many other problem solving
domains studied in Al (for example, medical diagnosis) in which there is no
well-established primitive level of description.

A second common property of engineering domains is that the central
problem can be posed abstractly as follows: Given the vocabulary of primi-
tives and the rules for their legitimate combination, devise a composite (usu-
ally hierarchical) structure which has some desired behavior. This character-
ization of engineering problems distinguishes them from other Al problems
(for example, playing chess) in which the relationship between structure and
function is not the central concern.

In addition to the central synthesis problem, engineers also need to be
able to analyze a device (i.e., to infer properties of its behavior from its
structure), and incrementally modify (debug) the structure of a device in
order to achieve a desired modification in behavior.

In summary, engineering problem solving is concerned with the analysis,
synthesis and debugging of hierarchical objects constructed for an explicit
purpose.

1.2 Uniform General Methods

Two quite different approaches have evolved for solving engineering problems.
One approach, which I call uniform general methods, takes advantage of
the fact that the primitive elements of the domain have well-understood
behaviors. For example, in electrical engineering, one way to determine the
frequency response of a linear circuit is to solve a set of equations derived from
the topology of the circuit, viewed primitively as a network of resistances,
capacitances and inductances.

Similarly in mechanical engineering, one way to analyze the stresses and
strains in a mechanical structure is by the so-called “finite element method.”
This method also comes down to solving (usually by computer) a set of
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I 4 INTRODUCTION

; equations derived by viewing the mechanical structure as a grid of primitive
. geometric elements that interact in simple ways.
o Programming also has its uniform general methods. For example, the
Floyd-Hoare approach [18, 24] to program verification starts with the seman-
N tics of the programming language primitives and combines them according
! to the structure of the program to derive a single large theorem to be proved
(again, usually by computer). :
d Uniform general methods, such as these examples, have several attractive
properties. First, they are based on firm mathematical foundations. As a
result, their domain of applicability is well-defined—you know when they will
work and when they will not. Second, the solution process is algorithmic.
and thus amenable to conventional computerization. \
! Despite these attractive features, the surpising fact is that experienced en- '
gineers typically use uniform general methods only as a last resort. The rea-

: son for this is that these methods typically return only an answer. They vield
little insight into what the engineer is ultimately concerned with, namely the
detailed relationship between structure and function in the device under anal-
ysis. The engineer needs to understand this relationship in order to modify
the structure of the device—for example, to bring it closer to achieving its
[ desired function.

Unfortunately, in real engineering applications (including programming),
a detailed description of how the behavior of a composite device follows from L
the interaction of the behaviors of its primitive components is extremely com- h
plex. In response to this complexity, engineering communities have evolved
intermediate vocabularies, giving names to those few out of all possible com-
binations of primitives that have been useful in practice. The next section
discusses the kind of problem solving which takes place in an engineering
. environment that is enriched with this kind of knowledge.
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1.3 Inspection Methods

NIy

Suppose you present an electrical engineer with a circuit and ask himn to
answer a question about its behavior, such as: What is the gain (ratio be-
tween the strength of the output signal and the strength of the input signal)?
One way of answering this question is to employ a uniform general method.
namely to methodically translate the structure of the circuit into a corre-
< sponding set of equations, which can then be solved to obtain the answer.
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INSPECTION METHODS 5

This is not, however, the kind of analysis method you are most likely
to elicit from an experienced engineer. If the given circuit is designed in
accordance with routine engineering practice, an experienced engineer will
first recognize the circuit. For example, he may say “this is a two-stage
audio amplifier.” Given this recognition, the task of answering the posed
question is greatly simplified. For example, in the case of a two-stage audio
amplifer, the engineer knows immediately that the gain may be computed
from the product of the ratios of a certain pairs of resistors at key points in the
circuit. In electrical engineering, answering questions about a circuit by first
recognizing its form is called analysis by inspection. Only if you intentionally
concoct an obscure circuit, can you force an experienced engineer to resort
to setting up equations.

Similarly in programming, suppose you present an experienced program-
mer with a large data processing system, and enquire as to its maximum
running time for given size inputs. Rather than resorting to the first princi-
ples of complexity analysis, the experienced programmer will first recognize
which of the standard algorithms for searching, sorting, etc. are being em-
ploycd and then use their known properties to compute the desired property
of the net behavior.

There is also synthesis by inspection. For example, faced with the task
of imiplementing a common electrical function, such as a high-gain, low-
impedance amplifier, the hallmark of an experienced electrical engineer is his
ability to retrieve from his mental (or actual) “cook book” an appropriate
first-cut design (which he may subsequently modify and refine).? Similarly,
faced with the task of implementing a common programming behavior, such
as associative retrieval, the hallmark of an experienced programmer is his
ability to call to mind a repertoire of appropriate standard techniques, such
as hashing, discrimination nets, or property lists.

I call these engineering problem solving methods, based on the recogni-
tion and use of standard forms, inspection methods; I call the standard forms
clichés. Examples of clichés in the domain of circuits include voltage divider,
emitter-coupled pair, and Schmidt trigger. Examples of clichés in the do-
main of programs include bubble sort, doubly-linked list, and linear search.
Clichés form the shared technical vocabulary of a discipline. Although the
word cliché has a negative connotation when used in the context of literary

2See [46) for a discussion of the role of inspection in relation to abstraction and
debugging.
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u

N criticism, in engineering, the repeated use of the same “forms of expression”

;:: is desirable. Reuse improves productivity in the design process, as well as ]
I the understandability (and thus maintainability) of the resulting devices.

A crucial part of any computational account of problem solving in an en-
gineering domain is therefore a representation for the clichés in that domain.
In order to motivate the representation for programming clichés introduced
Y in Section 3, Section 2 illustrates the properties and use of programming
clichés via several examples.

Notions similar to the cliché idea appear in software engineering in the
work of Arango and Freeman [3] (domain models), Harandi and Young (22
(design templates), and Lavi [29] (generic models); and in artificial intelli- ¢
, gence in the work of Minsky [35, 36] (frames, concept germs), Schank [50] !
W (scripts), and Chapman [11] (cognitive clichés). !
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2 Inspection Methods in Programming

The two goals of this section are to deepen the reader’s understanding of
what is meant by clichés in programming and to motivate the representation
for programming clichés defined in Section 3. To achieve these goals, this
section presents an informal but detailed scenario of program analysis by
inspection.

Solving an analysis problem in the context of programming amounts to
deriving some non-obvious properties of a program. To illustrate the role of
clichés in this process, let us put ourselves into the following not-so-imaginary
situation.

Suppose you are part of the maintenance team for a large software system.
You have becn assigned a system enhancement task which requires the use of
a hash table. In the utilities portion of the system sources, you find the code
shown in Figure 1. Unfortunately, as you begin to use this implementation of
hash tables in your application, you realize that the documentation doesn’t
answer an important question: How does this implementation handle dupli-
cate keys? More specifically: If you call TABLE-INSERT with an entry whose
key might already be in the table, do you first have to call TABLE-DELETE to
delete the old entry? (Perhaps, in the original application, duplicate keys
never occurred, so the implementor didn’t think to document what the be-
havior was under these conditions.)

As a straw man, you might consider solving this analysis problem by
formulating it as a theorem—something along the lines of proving that for
any table ¢ and entry e,

table-delete (table-insert(t,e), key(e)) = t.

If a theorem like this is true, then you can feel free to add and delete entries
without worrying about duplicates. If it is not true, however, you need to
understand how the proof fails so that you know what aspects of the behavior
of TABLE~INSERT and TABLE-DELETE you can rely upon.

More likely, if you are an experienced programmer, you will take the
approach of first studying the code to discover what clichés were used—what
is sometimes called “reverse engineering”—and then answering the question
of interest based on your understanding of the design. In this example, you
know from experience that there are basically two ways to handle duplicate
entries in any aggregate structure: either you check for duplicates at insertion
time or you search for duplicates at deletion time. The question then boils
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X
&
'h,
(DEFUN TABLE-LOOKUP (TABLE KEY)
(LET ((BUCKET (AREF TABLE (HASH KEY TABLE)))) i
(LOOP 2
(IF (NULL BUCKET) (RETURN NIL)) £
(EET ((ENTRY (CAR BUCKET))) 2
(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY))) v
(SETQ BUCKET (CDR BUCKET)))))
"
(DEFUN TABLE-INSERT (TABLE ENTRY) o
(PUSH ENTRY (AREF TABLE (HASH (KEY ENTRY) TABLE))) 0:“
TABLE) 2
(DEFUN TABLE-DELETE (TABLE KEY) .
(LET+ ((INDEX (HASH KEY TABLE)) k%
(BUCKET (AREF TABLE INDEX))) A
(IF (EQUAL (KEY (CAR BUCKET)) KEY) ';;.
(SETF (AREF TABLE INDEX) (CDR BUCKET)) - £
(BUCKET-DELETE BUCKET KEY))) ’;-;;: ar g
TABLE) NS
&
(DEFUN BUCKET-DELETE (BUCKET KEY) '\:':_
(LET ((PREVIOUS BUCKET)) o
(Loop
(SETQ BUCKET (CDR PREVIOUS)) ::
(IF (NULL BUCKET) (RETURN NIL)) Y
(WHEN (EQUAL (KEY (CAR BUCKET)) KEY) *::
(RPLACD PREVIOUS (CDDR PREVIOUS)) N
(RETURN NIL)) ®
(SETQ PREVIOUS BUCKET)))) e
o~
Figure 1. The Common Lisp functions above implement a hash table. Note :.-:::
that the BASH function is not defined here: assume it is just a numerical formmula N
which, although it may also he a cliché, is not the topic of this example. The KEY ®
function simply extracts some field from an entry. There should also be a function ,'-:\
for making a new table. "
g
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PROGRAM ANALYSIS BY INSPECTION 9
(DEFUN TABLE-LOOKUP (TABLE KEY) t
t
(LET ((BUCKET (AREF TABLE (HMASH KEY TABLE)))) _,}
(LoOP

v
1

(IF (NULL BUCKET) (RETURN NIL)) '5
linear 3

(LET ((ENTRY (CAR BUCKET))) search i

"
(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY))) ".:’
0

)
(SETQ BUCKET (CDR BUCKET))))) 4

e

Figure 2. Recognition of linear search cliché. )
down to recognizing which (if either) of these two decisions was made in o
the code. Note also that by taking the approach of understanding the code X
o completely first, you will be in a good position to modify the program to fit R
i’ your current application, if necessary. g’
Let us now proceed step by step through an introspective account of rec- %
ognizing the clichés in the code in Figure 1. As well as introducing further )
examples of clichés in programming, this scenario also illustrates some im- :.':
portant structural aspects of programming clichés which must be addressed )
in the formal representation. -
N
2.1 Program Analysis by Inspection 3
3
We begin with the first function in Figure 1, TABLE-LOOKUP. This function is :"
essentially a loop. A key feature of a loop is the number and form of its exit N
conditions. The loop in TABLE-LOOKUP has two exits as indicated in Figure 2. ;:
More specifically, this is an instance of the linear search cliché: X
‘ﬁ
A
A linear search is a loop in which a given predicate (the same 2
one each time) is applied to a succession of values (in this case, 'c
the values of the variable ENTRY) until either: a value is found e
which satisfies the predicate, in which case the search is termi- N
nated and the value satisfying the predicate is made available e
outside the loop (in this case via (RETURN ENTRY)); or there are ';-
& :
~ :‘
r {
)
'
3 " "\l '\"-"-"‘-'. ANANARLETS --': -‘-' . .'."'.".';':\/*.'.'.':\'-\'\’.‘;':\'.'-':'f:\".'\" W '-.'--.'.\"';'-\‘.\“'.'-\'.*-“‘;'.\"\.'.-;'.\:'“ ’
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vy
)

)
"
3
[
ﬁ* (DEFUN TABLE-LOOKUP (TABLE KEY)

[ X

< (LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

A

. (LOOP

; (IF (NULL BUCKET) (RETURN NIL))
ﬁ& list | (LET ((ENTRY (CAR BUCKET)))
] .
qﬁ enumeration (IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))

al

Ly (SETQ BUCKET (CDR BUCKET)))))

xS

\.

- Figure 3. Recognition of list enumeration cliché.
N

~

\i

L9

" (DEFUN TABLE-LOOKUP (TABLE KEY)

' (LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

['a)

. (LOOP

- p— e = e et m— o evws e o — - — a— - —

2 ((IF_(NULL BUCKET) (RETURN NIL)) 1

f ________________ 1 linear
: list | (LET ((ENTRY (CAR BUCKET))) | search
r - p— e e e — t— e — — om— — — w— w— — —

{ enumeration | (IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY))) L
. (SETQ BUCKET (CDR BUCKET)))))

: Figure 4. Overlapping occurrences of clichés.
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PROGRAM ANALYSIS BY INSPECTICN 1l

no more values, in which case the search is terminated with a
failure indication (in this case, by returning NIL).

Figure 3 indicates that TABLE-LOOKUP also contains an occurrence of one
of the most familiar Lisp programming clichés, namely the CAR, CDR, NULL
pattern of list enumeration. Note that “pattern” in this context does not
mean a particular configuration of the program string or parse tree, but rather
a particular set of operations connected by the appropriate data and control
flow. In the case of list enumeration, for example, the input to the NULL test
must be the same as the input to the CAR and the CDR; and control must exit
the loop when the NULL test succeeds. The formal representation defined in
Section 3 supports this notion of pattern in the definition of programming
clichés.

Another important aspect of programming clichés illustrated in TABLE-
LOOKUP is the fact that occurrences of clichés can overlap. Figure 4 shows
the superposition of the linear search and list enumeration clichés recognized
above. Notice that the NULL exit test fills two roles: it is the failure exit of the
linear search and also the empty-list test of the list enumeration. This way
of decomposing programs violates the strictly hierarchical approach of most
current programming methodoiogies. We will see several examples, however,
in which overlapping decomposition is necessary in order to recognize all the
clichés in a program.

The code for TABLE-INSERT is only one line long. The only cliché in
TABLE-INSERT has already migrated into the programming language: The
PUSH macro in Lisp captures the clichéd use of CONS to add an element onto
the front of a list, as in

(SETQ L (CONS ... L)).

(Section 4 discusses the relationship between clichés and programming lan-
guages.)

Moving on to TABLE-DELETE (Figure 5), we see that the body of this
function is a conditional which checks for a common special case that comes
up in the implementation of destructive deletion operations, namely deleting
the clement at the head of the data structure.® The form of this cliché, which
might be called special case head deletion, is as {ollows:

3Failure to check for this special case leads to a characteristic bug. For a further
discussion of bug clichés--a topic not pursued in this paper—-sce [51].
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12 INSPECTION METHODS IN PROGRAMMING SN
)
»
v
(DEFUN BUCKET-DELETE (BUCKET KEY) s
»
A
(LET ((PREVIOUS BUCKET)) M
(LOOP 2
(SETQ BUCKET (CDR PREVIOUS)) ;
Q
<
(IF (NULL BUCKET) (RETURN NIL))
Ve
U
(WHEN (EQUAL (KEY (CAR BUCKET)) KEY) | . 3
(RPLACD PREVIOUS (CDDR PREVIOUS)) search \
t
(RETURN NIL)) )
(SETQ PREVIOUS BUCKET)))) 3
.‘-
l!'
Figure 5. Recognition of linear search cliché. S
R T 1y
’ )
mff—
(DEFUN BUCKET-DELETE (BUCKET KEY) o
~
\.
(LET ((PREVIOUS BUCKET)) e
0
(Loop )
e
(SETQ BUCKET (CDR PREVIOUS)) -
-.\
trailing | (IF (NULL BUCKET) (RETURN NIL)) 0
pointer | (WHEN (EQUAL (KEY {(CAR BUCKET)) KEY) ;
list o
. (RPLACD PREVIOUS (CDDR PREVIOUS)) 2
enumeration g
(RETURN NIL)) e
]
(SETQ PREVIOUS BUCKET)))) N
A
Figure 8. Recognition of trailing pointer list enumeration cliché. o
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PROGRAM ANALYSIS BY INSPECTION 13

(DEFUN TABLE-DELETE (TABLE KEY)
(LET* ((INDEX (HASH KEY TABLE))

(BUCKET (AREF TABLE INDEX)))

(IF (EQUAL (KEY (CAR BUCKET)) KEY)
special case
(SETF (AREF TABLE INDEX) (CDR BUCKET)) head deletion

(BUCKET-DELETE BUCKET KEY)))

TABLE)

Figure 7. Recognition of special case head deletion cliché.

If the head of the data structure (in this case, the CAR of the list
BUCKET) satisfies the criterion for deletion (in this case, its KEY is
equal to the given key), then update all pointers to the head of
the structure to point instead to the tail of the structure (in this
case the CDR of the list). Otherwise, if the head of the structure
is not to be deleted, use a deletion by side-effect operation which
works for “internal” (non-head) elements.

This example illustrates, among other things, that data abstraction needs
to be a part of the formalization of programming clichés, since one wants to
refer abstractly in the cliché above to the “head” and “tail” of a structure,
separate from particular implementations (such as the CAR and CDR of a Lisp
list).

Moving on to BUCKET-DELETE (Figure 6), note that this function also con-
tains a linear search. The syntax in this case is very different from the linear
search in Figure 2. However, the data and control flow relationships between
the two search exits are the same.

BUCKET-DELETE also has instances of the CAR, CDR, and NULL operations
with data and control flow between them satisfying the constraints of the list
enumeration cliché (see Figure 7). Again, although the syntax of this occur-
rence of list enumeration is very different from the syntax in TABLE-LOOKUP,
we recognize the same cliché. Note that this occurrence of the cliché has an
additional bit of structure, which is a common extension of list enumeration,
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14 INSPECTION METHODS IN PROGRAMMING e b
N

(DEFUN BUCKET-DELETE (BUCKET KEY) ]

i

(LET ((PREVIOUS BUCKET)) )

(LOOP RS

\:

(SETQ BUCKET (CDR PREVIOUS)) N

e —— - A

trailing (IF (NULL BUCKET) (RETURN NIL)) ' b
. ' '
pointer | (WHEN (EQUAL (KEY|(CAR BUCKET)) KEY) | N
. search Wy

list | LL . — _ @ — - — — — — — 0

00 .

enumeration (RPLACD PREVIOUS (CDDR PREVIOUS)) _1 p 2
— e — — — —— —— — ——— — w— — §-¢
|_(RETURN NIL)) . ]

e

(SETQ PREVIOUS BUCKET)))) )

. \(

i
Figure 8. Overlapping linear search and trailing pointer list enumeration clichés. LR
.-‘.'r'? -,

(DEFUN BUCKET-DELETE (BUCKET KEY) ~
l.-w

)
(LET ((PREVIOUS BUCKET)) ':*
et

(LOOP ?-
= )
(SETQ BUCKET (CDR PREVIOUS)) F',: '
-~

N.
r }

(IF (NULL BUCKET) (RETURN NIL)) .

®

(WHEN (EQUAL (KEY (CAR BUCKET)) KEY) 55

e

splice 0

(RPLACD PREVIOUS (CDDR PREVIOUS)) e
out ;\.;
(RETURN NIL))
®

(SETQ PREVIOUS BUCKET)))) w
Figure 9. Recognition of splice out cliché. ,
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PROGRAM ANALYSIS BY INSPECTION 15

namely a “trailing pointer.” The control and data flow in this loop is ar-
ranged so that on each iteration there is a pointer (in the variable PREVIOUS)
to the cell in the list whose CDR is the current cell being enumerated (in the
variable BUCKET). This extension of list enumeration, which might be called
trailing pointer list enumeration is most commonly used (as is the case here)
in connection with destructive deletion operations.

This example illustrates that programming knowledge includes not only
clichés, but also relationships between them. Extension is one of a number of
different relationships between clichés which are supported by the formalism
described in the next section.

Finally, note in Figure 8 that the occurrences of the list enumeration and
linear search clichés in BUCKET-DELETE overlap in a similar manner to those
in TABLE-LOOKUP.

A final cliché that can be recognized in BUCKET-DELETE is splice out, as
shown in Figure 9. The arbitrary use of side effects like RPLACA and RPLACD
can lead to extremely hard-to-understand code. In this case, however, RPLACD
is being used in a very specific context: its second argument is the current
pointer of a list enumeration and its first argument is the corresponding
trailing pointer. This use of RPLACD removes the current element from the
enumerated list (by side effect). A cliché like splice out is an example of how
the recognition of clichés can bypass intractable general-case reasoning.

Using the Results of the Analysis

Now that you have finished analyzing the program, you are in a position
to answer the original question quite easily: This implementation does not
handle duplicate keys at all, because there is no checking for duplicate keys
at insertion time (TABLE-INSERT just does a push) or at deletion time (the
linear search cliché used in TABLE-DELETE stops after finding the first value
satisfying the criterion). Therefore, you do have to call TABLE-DELETE before
cach call to TABLE~INSERT in which the entry might have a duplicate key.

Furthermore, with this detailed understanding of the relationship between
the structure and function of the program, you are also 1n a good position to
modify the program, if desired. For example, suppose you decide to handle
duplicate keys at deletion time. There are two changes you need to make to
the program.

First, you need to replace the linear search cliché used in BUCKET-DELETE
by a related cliché, exhaustive linear scarch, which doesn’t stop after find-
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16 INSPECTION METHODS IN PROGRAMMING

%S

ing the first value satisfying the criterion, but rather searches for all values y
satisfying the criterion. The splice out action is then applied to each entry
found by the search. d

Second, because there could be several duplicate keys at the head of a
bucket, the special case head deletion cliché in TABLE-DELETE needs to be 4
replaced by an exhaustive linear search, in which the head deletion action
(the SETF) is applied to each case found. (As a code compression. this loop
could be combined with the loop in BUCKET-DELETE.)

Viewing the hash table program as the composition of clichés like linear
search, splice out, and so on, these changes are modular—a matter of adding :
or replacing a small number of conceptual parts—even though this may result
in many scattered changes at the code level.

’i -
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2.2 Program Synthesis by Inspection

The notion of recognizing familiar forms applies not only to analysis, but also 4
to the synthesis of programs. For example, consider synthesizing a program !
to satisfy the following specification: Given a set b and a key k, return a

value e, such that

(e €b A key(e)=k) V (e =nil A Vzeblkey(z) # k]). A

DFFES S L

“ e
»

A well-known uniform general method for program synthesis is to treat
b such a specification as a theorem (literally, Vbkde ...). If this thcorem can )
' be proved using constructive proof techniques only, then the resulting proof
is essentially a program which satisfies the specification.

More likely, if you are an experienced programmer, you will recognize that
this specification is not some arbitrary formula in first order logic, but rather
! an instance of a common specification cliché, which might be called find if

present: Given an aggregate data structure, find an element satisfying some

criterion; or if there is none, return a distinguished value. From experience,
; this specification suggests the combination of an enumeration with a linear
) search cliché, as in the following code.

» (LET ((BUCKET ...))
(LoOP
i (IF (empty BUCKET) (RETURN NIL))
(LET ((ENTRY (first BUCKET)))
N (IF (criterion ENTRY) (RETURN ENTRY)))
(SETQ BUCKET (rest BUCKET))))
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PROGRAM SYNTHESIS BY INSPECTION 17

Enumeration is an abstract cliché comprised of the above pattern of data
and control flow between operations on an abstract data type that supports
the operations of selecting the first element (first), computing an aggregate
with all but the first element (rest), and testing for empty (empty). The
linear search cliché, discussed earlier, is comprised of the pattern of data and
control flow associated with the criterion and empty tests above.

The next step in the synthesis is to fill in the criterion role of the linear
search with the code for testing the criterion of the specification (key(e) = k).

Nan e e e o

(LET ((BUCKET ...))
! (LOOP
\ (IF (empty BUCKET) (RETURN NIL))
(LET ((ENTRY (first BUCKET)))
(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))
(SETQ BUCKET (rest BUCKET))))

To obtain the code for the loop of TABLE-LOOKUP in Figure 1, the final
decision to be made is to implement buckets as Lisp lists. This amounts to

’ i. filling in CAR for first, CDR for rest and NULL for empty.
e (LET ((BUCKET ...))
(LooP

f (IF (NULL BUCKET) (RETURN NIL))
(LET ((ENTRY (CAR BUCKET)))
(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))
, (SETQ BUCKET (CDR BUCKET))))

This example of synthesis by inspection brings out several additional
| points regarding the formalization of clichés. First, we see that there are
' standard forms of specifications as well as programs. This suggests a wide-

spectrum language, so that the same approach can be applied to both speci-
. fication and program constructs. Second, we have seen examples of two more
kinds of relationships between clichés, namely implementation (enumeration

and linear search can be used to implement the find if present cliché), and

specialization (list enumeration is a specialization of enumeration).
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18 INSPECTION METHODS IN PROGRAMMING wtA
.
.
2.3 Program Validation by Inspection ,
H
Program validation is concerned with making sure that programs do what _
they are supposed to, or conversely, getting rid of errors. <
A uniform general method for program validation is program venfication -
In this approach, a formal proof is constructed to guarantee that a program -
! satisfies a given formal specification (e.g., a set of preconditions and post- “
conditions). T! 3 18 done by combined the specification with the axioms for 24
' each language p umitive in the program, yieldiug a single formula/theorem
to be proved. This formula can then be passed to a general purpose theorem .
prover. If the theorem is true, then the program satisfies the specitication. Y
Often, however, the theorem is not true, which means that the program has ::
an error. Unfortunately, when this happens, the theorem prover is not in a :‘
position to give you much advice as to where in the program the error might '
be or how to fix it. s
K Although the ultimate goal of program verification is to confirm that a j:

given program is “correct” with respect to some specification, most of the
verification process is actually spent dealing with programs that are not
yet correct. What is needed, therefore, is a complementary approach more
oriented towards diagnosing errors in terms of the structure of the program. LAH
so that the programmer has some hint how to proceed. One such approach is

’ a kind of inspection method that might be called near-miss cliché recognition.

' Near-miss cliché recognition is based on the idea of near-miss pattern
matching, as used by Winston [64] and others. In near-niss recognition. a
cliché is recognized when most but not all of its required elements are present.
To illustrate, consider the following buggy version of the hash table hucket

‘ deletion function.

XNty

TN A2

PR

(DEFUN BUCKET-DELETE (BUCKET KEY &AUX PREVIOQUS)
(Loop

(IF (NULL BUCKET) (RETURN NIL))

(WHEN (EQUAL (KEY (CAR BUCKET)) KEY)
(RPLACD PREVIOUS (CDDR PREVIOUS))
(RETURN NIL))

(SETQ PREVIOUS BUCKET)

(SETQ BUCKET (CDR PREVIOUS))))

Under certain input data conditions, this function will cause execution to
be interrupted with an error report something like the following -~
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PROGRAM VALIDATION BY INSPEC” ION 19

(DEFUN BUCKET-DELETE (BUCKET KEY &AUX PREVIOUS)

(LooP

near-miss | (IF (NULL BUCKET) (RETURN NIL))

trailing | (wHEN (EQUAL (KEY|(CAR BUCKET)) |KEY)
pointer

list
enumeration (RETURN NIL))

(RPLACD PREVIOUS (CDDR PREVIOUS))

(SETQ PREVIOUS BUCKET)

(SETQ BUCKET (CDR PREVIOUS))))

Figure 10. Near-miss recognition of trailing pointer list enumeration cliché.

‘.. ***ERROR#*** RPLACD - NIL INVALID ARGUMENT.

Applying near-miss cliché recognition to this function (see Figure 10) re-
veals a near-miss occurrence of the trailing pointer list enumeration cliché. In
this definition of BUCKET-DELETE, the appropriate list enumeration operations
are present with the appropriate relationships between them, and there is a
trailing pointer (in the variable PREVIOUS) whose CDR is the current cell being
enumerated (in the variable BUCKET), except on the first iteration. Based on
this recognition. the following helpful diagnostic message could be produced:

It looks like you are trying to implement a trailing pointer list enu-
meration of BUCKET, with PREVIOUS as the trailing pointer. Note,
however, that on the first iteration of the enumeration, the CDR
of PREVIOUS is not guaranteed to be equal to BUCKET.

There are, of course, many ways of modifying the program to fix this bug
(a correct version is shown in Figure 7). What this example illustrates is that
the same knowledge of clichés can be used in many parts of the programming
process.

Near-miss cliché recognition is obviously not a complete approach to val-
idation. It does not guarantee that a program does what you want, but only
that it does not have a certain class of structural flaws. On the other hand,
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" 20 INSPECTION METHODS IN PROGRAMMING R
.
. this approach does not require you to provide a formal specification. which .
* in many instances is at least as hard to write as the program itself. Further
R more, near-miss cliché recognition, when it works, provides the programmer
" . . -
~ with a very germane characterization of the error.
An interesting line of research, which is being pursued by Wills 53 ;
) to develop distance metrics which distinguish near-misses that are usetul :
'y diagnostics, from those that are so far away as to be irrelevant.
1§ This discussion of validation introduces another desideratui for the rep-
- resentation of programming clichés. Since near-miss clichié recognition is not
0 a complete approach, it is desirable to provide a forinal semantics for the
o representation of clichés that will make it possible to apply a combination :
] . . . . d
Wy of inspection methods and more general, theorem-proving methods to vali-
'.:' dating programs. For example, the synthesis by inspection scenario in the
A preceding section suggests a verification approach in which a proof structure
N is built in parallel with the synthesis steps by combining pre-proved lemmas g
(associated with the clichés), using general theorem-proving as the “glue.” '
:: This hybrid approach is currently being pursued in a system by Feldman and
s Rich [44].
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3 The Plan Calculus

Formalizing the notion of inspection methods introduced in Sections 1 and 2
has two steps. The first step is to define a representation language for pro-
gramming clichés. This representation language, called the Plan Calculus,
is the topic of this section. The second step is to use the Plan Calculus to
codify a library of specific clichés. An initial library of clichés for the routine
manipulation of symbolic data is described in a separate paper [39].

3.1 Desired Properties of the Representation

A rcader of the scenarios in Section 2 might be left with the impression
that a programming cliché could be represented most directly as some frag-
ment of program text, perhaps with holes in it. Although this is an effective
expository technique, program text or schemas lack several important prop-
erties that are desired in a knowledge representation for clichés, especially
for the purpose of building automated programming tools. Three important
properties that templates and schemas lack are:

e Canonical Form
e Convenient Manipulation

e Language Independence

A discussion of these properties, and why program text or schemas lack them,
serves as a good introduction and motivation for the Plan Calculus.

The first property which program text or schemas lack is canonical form.
Consider the linear search cliché as an example. The idea of a linear search
could be expressed informally in English as something like the following.

A linear search is a loop in which a given predicate (the same one
each time) is applied to a succession of values until either a value
is found which satisfies the predicate, in which case that value is
made available outside the search; or there are no more values,
in which case the search is terminated with a failure indication.

In building a library of clichés, we would like there to be a unique formal
structure representing this concept. Unfortunately, in Lisp and most other
programming languages, this kind of computation can be written in many
different forms, such as:
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! 22 THE PLAN CALCULUS ALg

s (LooP )
o (IF exhausted (RETURN NIL)) ;
' t
'3 :
R (IF (predicate current) (RETURN current))

3 3 ;
o Or using PROG with only one RETURN, instead of two:

LY

o (PROG ()

P LP (COND (exhausted NIL)

0 T ...

(IF (predicate current)
(RETURN current))

(GO LP)))) ‘

)

:

" Or even tail recursively: )
] (DEFUN SEARCH (...) swe M
: (COND (exhausted NIL) :
’ (T ...

s (COND ((predicate current) current) .
4 (T ... o

(SEARCH ...)))))) 2

1 (Wt

£ ‘.

¥ The problem here is choosing which version to use. Viewed formally N

o as abstract syntax trees in the grammar of the programming language, the N

3 different versions above have very different structures. Yet, considering the b

semantics of the programming language, all three versions specify essentially -
the same algorithm, i.e., the same set of computations with the same data 5
and control relationships between them.* N
The Plan Calculus remedies this problem by representing data aud control <

o .

flow structure explicitly. For example, all three of the schemas above (and .
many other such variations) are canonicalized to the single representation X

. 1Some readers may feel that the tail recursive version is fundamentally different. How- -~

: ever, recent implementations of Lisp treat loops and tail recursion as alternate stylistic N
expressions of iteration, i.e., tail recursion is executed without accumulating stack depth. -
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v
" U
) exhausted:test
[ T I F b
' Pt
)
. =+ 3
; A JV A i
b found: ;
apply-predicate .
: F | T -
- pA
. - -
S . T continuation: J
s . [] ! linear- >
‘ P4 search -
7 ¥ l I l T ~
d I J
’ | | 0
T .
: | s I )
. b P
| T ] | :
..
, l- f— —— — — — -ﬁu :
: A 1 :
. T | F F | T -
: exhausted-exit: found-exit: -
. Jjoin Jjoin -
LJ \V
4 linear-search R
v Figure 11. Plan for linear search cliché. ::
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24 THE PLAN CALCULUS

shown in Figure 11.5 A programming cliché represented in the Plan Calculus.
such as Figure 11, is called a plan.

The notation used in drawing diagrams of plans is describid in detail
below. Note for the moment that the formalism takes its inspiration fruin
the kind of diagrams that programmers often scrawl on blackboards and 11.-
backs of envelopes when in discussion with other programmers. A pian 1s
essentially a hierarchical graph structure made up of different kinds of boxes
and arrows. The inner rectangular boxes denote operations and tests. while
the arrows between boxes denote data flow (solid arrows) and control flow
(solid arrows with double cross-hatch marks).

A second desired property which program text or schemas lack is conve-
nient manipulation. As anyone who has ever written a complicated macio
package can attest, operations on program text, such as concatentation and
substitution, are in general a quite tricky business. Typical problems in-
clude unintended interactions due to accidental duplication of identifiers and
awkward constructions due to mismatch of syntactic forms. Morcover. ma-
nipulations which are conceptually simple from an algorithmic point of view
often correspond to inconvenient transformations at the program text level.
For example, consider combining a cliché of the form

(A (B...) (C...}) ..0)

with another cliché of the form

L, T T e I 0 N

(F (G...) (H...))

such that the output of G is used as the third input to A.

Operating on these clichés in the program text form shown above, this
combination is achieved by a complicated sequence of rearrangements result-
ing in code something like the following:

e n" “'." we 4NN

(LET ((X G ...)N
(A (B...) (C...0 X
(FXMH...DN

In the Plan Calculus the combination of these two cliclics. cach expressed
as a plan, is a matter of adding only the single data flow are shown by 1he

[

aa vy,
L L4

A program which automatically peforms this canonicalization has heen imnplemented
by Waters [61].
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Figure 12. Combining two plans by adding a data flow arc.

bold line in Figure 12. This illustrates how the Plan Calculus is a represen-

tation in which the operations that typically occur in the application task

(namely, manipulating the algorithmic content of programs) have a more

direci correspondence with the operations which are naturally supported by

the swntax of the representation (namely, addition, deletion and modification
N of arcs and nodes in a directed graph).

6_ 4 The use of data flow in the Plan Calculus also reduces the complexity of
reasoning about programs by eliminating a lot of spurious side effects. In a
conventional programming language semantics, every assignment statement
is a side effect. Most assignment statements, however, are not inherently
interesting state changes, but rather are part of a pattern of variable assign-
ments and references used to move data from its point of production to its
point(s) of use. The Plan Calculus models this use of variables explicitly as
data flow arcs.

For example. from a programming-language point of view, the following
code involves a side effect (1o the variable X):

(SETQ X (P A))
Q X
The corresponding plan, icwever, has no side effects in it—the use of the
variavle X corresponds to a data flow arc from P to Q. (Side effects in the
Plan Calenlus are discussed further in Section 3.6.)
The third, and most obvious, property that program text or schemas lack

is langnage independence. This is a problem for two reasons. First, from
a practical point of view. the compilation of libraries of clichés to support
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¢ 26 THE PLAN CALCULUS W
' :
: automated programming tools is likely to be an expensive process. whose y
- cost will need to be amortized over as broad use as possible. .\ separate li- .
' brary for each programming language makes this amortization more difficuls. .
G Second, from a theoretical point of view, common experience tclls us that if
g a programmer knows how to write a cliché like hash table, linear search. or
o bubble sort in Lisp, he also knows how to do it in other languages i which 3
. he is fluent. )
"_ The relationship between the Plan Calculus and programming languages
: is discussed further in Section 4. Modules have been implemented to translate
. between the Plan Calculus and an assortment of programining languages [14, :
» 59, 61]. '
An additional desideratum for the representation of clichés is that the
iy formalism be neutral between analysis and synthesis. This turns out to
be of practical importance in building interactive programming aids, since -
g in practice these two activities are intermingled. A neutral representation <
- of clichés is also theoretically more attractive than a representation tailored N
: specifically for analysis or synthesis only, since is em a priori a simpler account )
: of the phenomena. N
2 .-
~ 3.2 Plans i
:':- The choice of the term plan for the knowledge representation used in this '
L. work 1s motivated from two directions. One sense of the term is taken from p
L viewing programming as a kind of engineering activity. Other engineering
disciplines have developed specialized schematic languages for representing "
. the structure and function of devices and partial designs. For example, an :
.': electrical engineer uses circuit diagrams and block diagrams at various levels -
:_ of abstraction; a structural engineer uses large-scale and detailed blue prints
. which show both the architectural framework of a building and also various
subsystems such as heating, wiring and plumbing; a mechanical eugineer 5
" uses overlapping hierarchical descriptions of the interconnections between "4
4 mechanical parts and assemblies. In this sense, the Plan Calculus is intended N
y to serve as a “blueprint language” for programs. Also, as in other engincering N
: disciplines, the same language is used to describe both specific devices and
= the clichés out of which these devices are commonly built. ;
, A fundamental characteristic shared by all these types of engineering R
g plans is that at each level there is a set of parts with constraints between -
- them. Sometimes these parts correspond to discrete physical compeonents, X
+ . 1.
] s."-l.:. :
., g ,
)
. 5
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» -
" such as transistors in a circuit diagram. More often, though, the decomposi- N
! tion is in terms of function. For example, a simple amplifier in an electrical ,
;‘ block diagram has the functional description V; = kV;, where V; and V, are :
. the input and output signals, and k is the amplification factor. As far as this
[ level f plan is concerned, the amplification may be realized in any number of d
" ways. A primitive component may be used or another plan may be provided N
- which decomposes the amplifier further. By analogy, plans in programming ]
L specify the parts of a computation and constraints between them.
. Another sense of the term plan is taken from the planning subfield of v
33 Al The goal of a planning algorithm is to find a sequence of actions which 4
N transforms a given initial state of the world into a desired final state. This A
‘o problem is analogous to the synthesis of straight-line programs. In early :
A planring work (e.g., [17]), a plan was represented simply as a sequence of
actions. Sacerdoti [49], however, showed that it was much more efficient to
, use a partially-ordered set of actions as the basic representation. In this o
' representation, the planning algorithm needs to consider only those ordering .
constraints which are actually required by the current set of actions, rather
;- than forcing an arbitrary total ordering. By analogy, a set of operations :
- ‘.. in the Plan Calculus may be partially ordered by control and data flow, as B
'~ oppoied to operations in progratn text, which must be totally ordered. 3
- Like plans in the planning literature [48], plans in the Plan Calculus
b provide representation at different levels of abstraction. Symbolic evaluation ;
X of plans in the Plan Calculus [53] is also very similar to techniques used in .
- planning. )
o )
.3 Structural and Logical Sublanguages .-
X The Plan Calculus is divided into a structural sublanguage and a logical j
3 sublanguage. The structural sublanguage is the portion of the Plan Cal- .
‘ culus shown in plan diagrams. The logical sublanguage comprises the pre- ;
A conditions, postconditions, and other logical statements which annotate the )
N diagrams. Some applications require only the structural part of the Plan 3
N Calculus; others also make use of the logical sublanguage. A
- The following sections undertake the detailed definition of the Plan Cal-
- culus in two stages. First a diagrammatic notation for plans is introduced K
) along with an informal description of its semantics in terms of an interpreter 9
2 for plan diagrams. Following this intuitive introduction, a formal syntax {or ::1
- the structural sublanguage is given. ;
AR 3
- ” *)
.
- R’
N
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A 28 THE PLAN CALCULUS D A
»
3 old:set 1 J input:any universe:set l l criterion:predicate N
)
’{ some :
R set-add
T | F N
- 1 new:set 1 output:any A
-
true-input:any 1 lfalse-input:a.ny
; T | F :
: »
‘ Join "
[} ¢
1 output:any
i Figure 13. Examples of atomic plan diagram elements: an input/output specifi- N
Y cation (Set-Add), a test specification (Some), and a join specification (Join). .
X >
! A formal semantics for the complete language has been developed [10. EO
; 41, 42], but is beyond the scope of this paper. The definition of the logical .
" sublanguage is also omitted here, since it is best treated within a larger o
- discussion of the formal semantics. w
A
s Fa
3.3 Plan Diagrams 4
-
X Ry
A plan diagram is a convenient graphical depiction of the structural portion -
of the Plan Calculus. Examples of the atomic elements out of which plan .
diagrams are composed are shown in Figure 13.
Input/Output Specifications s
& The box labelled Set-Add in Figure 13 is an example of an input /output iy
. specification. An input/output specification is drawn as a rectangular box *
with arrows entering at the top (denoting the inputs) and leaving from the -
bottom (denoting the outputs). Each input or output is labelled with a name N,
and a type, separated by a colon. For example, Set-Add has two inputs: O} e
(of type Set) and Input (of tvpe Any). The single output of Set- Al s :j
A :
D _-:'
.f
)
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PLAN DIAGRAMS 29
1
:' called New (of type Set). The names of the inputs and outputs within a N
: given input/output specification must be unique. However, the same names :
' may be reused in other specifications. 2
The logical portion of an input/output specification associates a set of
v precenditions and postconditions with each plan diagram box. For example, by
‘ the postconditions of Set-Add state that the New set includes the Input R
p ohject, all the elements of the Old set, and no others. The logical sublanguage :
! also includes a hierarchy of types, in which Any is defined as the most general o
data type.
8.
, Test Specifications :
o The box labelled Some in Figure 13 is an example of a test specification. A .
test specification is drawn as a rectangular box, in which the bottom part is .
K divided into two sides labelled “T” and “F”. The inputs to a test specification .
: are just like the inputs to an input/output specification. The outputs of a ;
3 test specification are divided into two groups. Those outputs produced when X
. . the test succeeds are indicated lcaving from the side of the bottom labelled 8
KJ *T": those outputs produced when the test fails are indicated leaving from r
- the side of the bottom labelled “F”. For example, Some has two inputs: the R
" Universe (of type Set) and the Criterion (of type Predicate). The output of "
. Some, which is defined only when the test succeeds, is called Qutput (of type .
Anv). ;
. As with input/output specifications, the logical portion of a test speci- -
- fication associates a set of preconditions and postconditions with each plan '
., diagram box. For example, the postconditions of Some state that the Output
& (when it is produced) is a member of the Universe and that the Criterion is
. true of it.
Y Test specifications also include a test condition, which is true if and only .
if the test succeeds. The test condition of Some states that there exists an N
\ element of the Universe such that the Criterion is true. (The generalization of N
2 test specifications to n mutually exclusive test conditions is straightforward.) \
s .-
Join Specifications R
. The box labelled Join in Figure 13 is an example of a join specification. A 4
2 join specification is drawn as a rectangular box with the top part divided into N
o two sides fabelled *T™ and “F”. Inputs to a join specification are indicated >
T T
‘.'\{“ >
! "
g %
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LI L e

minuend:numberl 1 subtrahend:number

difference l 1
N

o
1 b subtract: l::
output:number difference )
N
l input:number »
&,
L ¢
liz :
normalize: X
absolute-value absolute-value N ]
' .
1 output:number 1 '
compare: '
greater:number lesser:number less-than T
r | F .
less-than :.
T_] 4
F equality-within-tolecrance
(e
Figure 14. The three input/output and test specifications illustrated at the left .
of the figure are combined using data flow to construct the plan diagram at the .
right. Equality-Within-Tolerance checks whether two quantities are equal. within ol
some tolerance. -
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entering the top of the box; outputs leaving from the bottom. Join specifi-
cations are used to end conditional blocks begun by test specifications. The
inputs to a join specification are grouped similarly to the outputs of a test
specification. The inputs on either the “T” or the “F” side are consumed
only when the corresponding branch of the conditional block is executed.
The output of a join specification is always the same as whichever input is
consumed.

The join specification in Figure 13 has one input on each side and one
output. Other join specifications may have several—but the same number
of—-inputs on each side, and on the output. (Join specifications can be
generalized to n mututally exclusive cases analogously to test specifications.)

Unlike input/output and test specifications, join specifications do not
correspond to any real computation in the final program. Rather, they are
a technical artifact used in well-formed plans to specify which data is made
available for further computation, depending on which branch of a conditional
is executed. For example, the logical conditions associated with Join state
that the Output is equal to the True-Input when the “T” case holds, or the
False-Input when the “F” case holds.

Data Flow

Input/output specifications, test specifications and join specifications are
connected together to form plan diagrams using two kinds of structural con-
straints.

The first kind of structural constraint is data flow. Data flow i1s shown
in plan diagrams by a solid arrow connecting an output of one box with an
input of another. Data flow arcs may fan out (i.e., there may be several arcs
originating at a given output), but may not fan in (i.e., there may be only
one arc terminating at a given input). No directed cycles are allowed (loops
are represented using tail recursion, as described below.)

Figure 14 shows a simple plan diagram, Equality-Within-Tolerance, con-
structed using data flow. Equality-Within-Tolerance checks whether two
quantities are equal, within some tolerance. Each box in a plan has a unique
name, so that multiple occurrences of boxes of the same type may be re-
ferred to unambiguously. These names are called the roles of the plan. The
roles of the plan Equality-Within-Tolerance are Subtract (of type Difference),
Normalize (of type Absolute-Value), and Compare (of type Less-Than). To
reduee clutter in plan diagrams, the names and type restrictions of the in-
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(LET ((X (A...)))

(o (B8X) (X))

(LET* ((X (A ...))
(Y (c X))

®3E) M)

Figure 15. In the plan diagram at the left, data flow only partially constrains
the order of steps in the computation. Both versions of the code at the right are

allowed by this plan.

A

B

Figure 18. An example of a plan with a data flow constraint in which two inputs

are “wired together.”

YN g B A N NN S S R s A e

H, 18,088

% N
r

G

!
L,
:-,\_
:\-
o
\"'
-
'\
e
.
L]
o)
0y
F.
2
]
0\
:

"
2
S
»

“w

Y. X3 ... '-' ‘-‘. .-.. ] -.._

! 4
DR AR L S

F e

W@y
° o

N

-
o

LA T
A

'”
7’




74
PR XS

PLAN DIAGRAMS 33
puts and outputs of boxes are usually omitted, since they can be found by :
reference to the definition of the box type. !

Data flow constraints in plan diagrams are an abstraction of the various
different mechanisms by which the flow of data can be achieved in different

programs and in different languages. These mechanisms include nesting of 2
expressions, use of intermediate variables, and special forms. For example,
in the following Lisp code for Equality-Within-Tolerance, all the data flow is =
achieved by nesting. g
(< (ABS (- ... ... ) oD ',
The same data flow could also be coded using an intermediate variable, :
N
(LET ((X (- ... ... ))) R
(< (ABS X) ...))) s
Al
or a combination of nesting, an intermediate variable, and a special form.
}
" (LET ((Y (PROG ... 4
b (RETURN (ABS (- ... ...)))))) -
(¢ Y ...0 ",
Data flow constraints also provide another kind of abstraction of program -
text: Any order of steps is allowed in the final program, as long as it is p
compatible with (i.e., is a completion of) the partial order specified by the -
data flow (and the control flow—see the following section). An example of a 1
partially-ordered plan and two final programs is shown in Figure 15. e
A slightly different kind of structural feature which can also be thought .
as a data flow constraint is illustrated in Figure 16. In this plan, the inputs N
to A and B are “wired together.” What this means is that when this plan
is combined with other plans, the data flow to A and B must come from the :
same output. This feature also appears in Figure 11 earlier in this section. :
r
Control Flow )
The second kind of structural constraint in plans is control flow. Control flow -
is shown in plan diagrams by a cross-hatched arrow between an exit point -
of one box and an entry point of another. Input/output specifications have -
a single entry point (at the top of the box) and a single exit point (at the ;
bottomn of the box). Test specifications have a sii:gle entry point (at the top 7
s w
o :
L)
.
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Figure 17. A plan diagram illustrating control flow and data flow. Compute-
Absolute-Value computes the absolute value of a number.
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of the box) and two exit points (one on each side of the bottom of the box).
Join specifications have two entry points (one on each side of the top of the
box) and one exit point (at the bottom of the box). Control flow arcs may
both fan in and fan out. No directed cvcles are allowed.
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Figure 17 shows a simple plan diagram, Compute-Absolute-Value, con-
structed using control flow and data flow. Compute-Absolute-Value com-
putes the absolute value of a number by negating it if necessary.
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It is important to note the distinction being made here between \bsolute-
Value and Compute-Absolute-Value. Absolute-Value is an inpnt,output
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(PROGN
(A)
(B)
()]
(D))

(PROGN
(A)
©)
(B)
(D))

Figure 18. In the plan diagram at the left, control flow only partially constrains
the order of steps in the computation. Both versions of the code at the right are

allowed by this plan.

U
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Figure 19. These two plan diagrams have the same meaning. due to the transi-

tivity of control flow.
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’ 36 THE PLAN CALCULUS Y& ;
-
. specification (used, for example, in the plan Equality-Within-Tolerance in :E
Figure 14), which has the postcondition that the output is the absolute value ";‘
{ of the input. Compute-Absolute-Value is a plan (combination of steps) which ;;‘
implements this specification. In general, there may be several different plans
{ which implement a given specification. The notion of a plan implementinz « o
specification is captured in overlays, a feature of the Plan Calculus described T~
below. o
Control flow constraints in plan diagrams are an abstraction of the varions -
different mechanisms by which the flow of control can be achieved in different ]
programs and in different languages. These mechanisms include nesting of v
expressions, sequencing primitives, and special forms. For example, in the o
following Lisp code for Compute-Absolute-Value, the necessary control flow ;:'._
is achieved using the special form IF. )
(IF (MINUSP X) '.,-
(SETQ X (- X))) :E_
o
The same control flow is achieved in a more complicated way in the following :' :
code through the interaction of the special forms COND, PROG and RETURN. o a{
™o :’ -
(PROG ... N
(COND ((MINUSP X) ...) Y
(T (RETURN))) e
(SETQ X (- X))) "
Like data flow, control flow constraints also provide a partial-order ab- :E-r
straction of program text. Conventional programming languages do not dis- :'_::
tinguish between the necessary orderings between program steps aud those ::-
that are chosen arbitrarily. In the Plan Calculus, any order of steps is allowed ::
in the final program, as long as it is compatible with (i.e.; is a completion ®
of) the partial order specified by the data and control flow. Thus a control ."\
flow arc between box A and box B in a plan diagram does not mean that /3 _:,.\-
immediately follows A, but rather than B eventuallv follows A. An example -:::-.
of a plan partially-ordered by control flow and two possible final programs s ';\
shown in Figure 18. o _
Unlike data flow, control flow constraints are transitive. For example, the D
two plan diagrams in Figure 19 have the same meaning, despite the fact that ::j:'.:
they have different syntax. This is an undesirable lack of canonicalness in :'_-'.-]
the structural part of the Plan Calculus, which has been handled by building T
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A PARALLEL EXECUTION MODEL FOR PLAN DIAGRAMS 37

knowledge of transitivity into the programs which manipulate the diagrams.
(See Section 4 for a discussion of other approaches to fixing this problem.)

Finally, note that notion of control flow used here has a different flavor
from the notion used in typical flowchart languages. In the Plan Calculus,
a control flow arc is a constraint on possible execution orders, whereas in a
typical flowchart language, a control flow arc is more like an abstract “jump”
instruction.

3.4 A Parallel Execution Model for Plan Diagrams

The meaning of a plan diagram is defined formally as the set of computa-
tion sequences it allows (see {40, 41, 42]). A useful intuitive model for plan
diagrams, however, is to imagine their direct execution as paralle] dataflow
programs. This section describes a set of rules for executing plan diagrams.
A symbolic interpreter for plan diagrams along these lines was implemented
by Shrobe [53].

Basically, plan diagrams are executed by having “tokens” flow between
boxes along the data and control flow arcs in a plan. Boxes consume tokens
at the top and produce tokens at the bottom. The tokens that flow along
data flow arcs are symbolic objects with the appropriate properties. The
tokens that flow along control flow arcs are only for controlling conditional
execution, and have no other properties. Each box has a buffer for each
input, where data tokens wait until they are consumed, and a counter for
each entry point, which counts how many control tokens have arrived.

Execution begins by inserting tokens representing the starting data into
the input buffers of the data flow sources of the diagram, i.e., the inputs
of boxes that have no incoming data flow arcs. Execution then proceeds in
parallel according to the activation rules for each kind of box.

An input/output specification is activated when a token has arrived at
cach of its incoming arcs, i.e., when there is a data token waiting in each of
its input buffers, and the entry point has counted a control token for each
incoming control flow arc. (If there are no incoming control flow arcs, then
this part of the condition is satisfied vacuously.)®

6Notice that there is a slight asymmetry here between data flow and control flow.
Incoming control flow arcs fan-in at a single entry point, whereas each data input is
allowed only a single incoming data flow arc. Another way of thinking of this, which
resolves the asymmetry, is to consider each incoming control flow arc to have a separate
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Figure 20. An example of executing the plan diagram for Compute-Absolute-
Value (see Figure 17) according to the parallel execution model. The large solid
circles represent data and control tokens flowing along arcs. Activated boxes are
indicated in bold. The examnple continues in Figure 21.
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(5) (6)

N (7)

U

I—

Figure 21. Continuation of Figure 20, showing an example of executing the plan
\ diagram for Compute-Absolute-Value according to the parallel execution model.

o The large solid circles represent data and control tokens flowing along arcs. Acti-
vated boxes are indicated in hold.
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40 THE PLAN CALCULUS

When an input/output specification is activated, if the inpnt data sat-
isfies the preconditions of the specification. then output data =atisfving tl.-
postconditions is produced at each output, and a control token i~ produced
the exit point. If the input data does not satisfy the preconditions, executici
terminates abnormally.

When tokens are produced at an output or exit point, they are propagatcd
along the data flow and control flow arcs to the input buffers and entrv paint
counters of the connected boxes. Where there is fan-out of data flow arc-.
the intuitive model is that multiple pointers to the same data are created. as
opposed to multiple copies. (This is to allow modelling of side eifects e
below.) Where there is fan-out of control flow arcs, it doesn’t matter whether
you copy or create multiple pointers, since control tokens have no distinet
properties.

A test specification is activated the same way as an input/output speci-
fication. If the input data does not satisfy the preconditions of the specifica-
tion, execution is terminated abnormally. If the input data does satisfy the
preconditions and the test condition is true. then output data and a coutrol
token are produced on the “T” side of the box: otherwise output data and a
control token are produced on the “F” side of the box.

A join specification is activated when tokens are present at all of the
incoming arcs of one or the other side of the box. When this occurs. a
control token is produced at the exit point, and the appropriate data tokens
are passed through to the corresponding outputs.

Figures 20 and 21 show an example execution of the Compute-Absolute-
Value plan.

A few points are worth noting about this execution model. First, the
purpose of the model is to provide intuition into the meaning of the diagrains,
not to provide a formal foundation. For example, to formally prove properties
of plans (such as whether a given plan terminates normally for all possible
inputs) requires manipulating the logical sublanguage of the preconditions,
postconditions, and test conditions, which is outside of this exceution model.

Second, this execution model is particularly ecasy to visualize, because
there are no cycles in the control flow or data flow. This does not. however,
allow for looping computations. The next section introduces hicrarchical
and recursively defined plans, which are used to model loops and recursive

“control flow input.” (The way control flow fan-in is typically drawn m plan diagrams
suggests this view.) This view, however, has the undesirable property that the number of
control flow inputs is not fixed for a given type of bax, but depends on the context of use.
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HIERARCHICAL PLANS 41

computations generally.

Finally, note that the Plan Calculus is a wide-spectrum language (this
point will be discussed further in Section 4). Depending on how specific the
input data is, and whether the steps of the plan are totally ordered, executing
a plan can range from being equivalent to executing a conventional program,
to being the symbolic evaluation of a specification.

3.5 Hierarchical Plans

The type of a role in a plan, in addition to being an atomic element (an
input /output, test, or join specification), may also be a plan. This makes it
possible to reuse already defined clichés to build larger clichés in a hierarchical
fashion. For example, Figure 22 shows the plan Approx-and-Retry-Sqrt,
which has the plan Equality- Within-Tolerance (defined earlier in Figure 14)
as one of its subplans. Approx-and-Retry-Sqrt is a somewhat contrived plan
that computes the square root of a number using an approximation operation
and retries the approximation only once if necessary.

Note that the square-root approximation operation (Approx-Sqrt) in Fig-
ure 22 has an extra input (Limit) specifying the maximum number of steps
to be used in the approximation. If the result of the operation is not within
tolerance (Check), the iteration limit is increased (Increase) and the approx-
nnation is tried again (Retry). The role Check is itself a plan, Equality-
Within-Tolerance, with roles Subtract, Normalize and Compare. Note that
the formula used to compute the new, increased limit from the old limit and
the absolute value of the error is not specified in this diagram.

Within hierarchical plans, it is convenient to refer to parts at different
levels in the structure by composing role names into paths. For example, in
the plan Approx-and-Retry-Sqrt, the path Approx.Limit refers to the Limit
input of the Approx role. Similarly, Check.Compare.Lesser refers to the
Lesser input to the Compare role of the Check role.

Notice in Figure 22 that a dashed box is drawn around the parts of a
subplan. This boundary is not, however, a barrier to establishing connec-
tions between the parts of the subplan and the surrounding plan. Inputs
to intermediate steps of a subplan can be provided from the surrounding
plan and intermediate results can be “tapped.” For example, note the data
flow connection between the output of Check.Normalize and the input of the
Increase step.
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approx:
approx-sqrt

1

t 3

multiply:
times

check: | |
equality-
within-
tolerance

==5"

L J—

subtract:
difference

3

normalize:
absolute-value

{

compare:
less-than

T | F

b —

]

increase:

T | F

end:join

k!

153

retry:
apprax-sqrt

r___l

approx-and-retry-sqrt

Figure 22. An example of a hierarchical plan.
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base:
sequence

indexed-sequence

base:sequenccl 1 index:integer

make-indexed-
sequence

I output:indexed-sequence

oId:indexed-sequenceJ 1 input:sequence 1 input:indexed-sequence

alter-indexed- select-indexed-
sequence-base sequence-base

l new:indexed-sequence 1 output:sequence

old:indexed-sequencel 1 input:integer l input:indexed-sequence

alter-indexed- select-indexed-
sequence-index sequence-index
l new:indexed-sequence l output:integer

Figure 23. An example of a data plan and the corresponding accessors. The
accessors are implicitly defined as part of the definition of the data plan.
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old:indexed-sequence

|'_ - - - -/ — - )

. ’

N :

y l base: ;

» | sequence 2
£ e

- — 4 ‘

d

A

4 ¢

4 bump: !

‘ oneplus 4

. o

. ! <

- '..q

update; - ]

new-term ' _

1. "- ’

N v

" -

X -

— - — — — Lol

' r_ — -1 —1 -

Y ¥ I -

I base: jndex: )

l sequence integer | 1

“_a e~

new:indexed-sequence N
' bump-and-update ‘.
Figure 24. An example of a hierarchical plan with a mixture of data and computa- .-

tion roles. The plan Bump-and-Update captures the clichéd pattern of operations i
on an indexed sequence in which the index is incremented (Bump) and a new term
is stored (Update).
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L2

R el

J old:indexed-sequence

J 4

old-base: old-index:
select-indexed- selec t-z‘nd_exed-
sequence-base sequence-index

RSN T AL Sy

% 5

Y

! bump:
4 oneplus

LTI LAY NS

i |

A A

o« <
.

update:
new-term

7,00

w
o

a4
v

.

T

Y

. make:
3 make-indexed-
sequence

'R s

P

Tt et

v
LR P

l new:indexed-sequence

bump-and-update

Figure 25. An equivalent version of Bump-and-Update (see Figure 24), in which
explicit accessors have been used instead of using data plans.
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o
Y
Data Plans hY
W
The type of a role in a plan can also be a primitive data type, such as e
Integer, Sequence, or Set. A plan all of whose roles are data types (or hierar- y
chically, data plans) is called a data plan. Data plans are used to represent -
standard data structure aggregations which appear in the implemenaiion o
of more abstract data types. For example, Figure 23 shows the data plan N
Indexed-Sequence, which represents the common cliché of a sequence (Bax¢) A
with an associated index pointer (Index). The Base is typically implemented o
more concretely as an array. This data plan is, for instance, part of many 4
implementations of buffers, queues, and stacks. o 3
The logical portion of a data plan associates an invariant with the data N
aggregation. For example, the invariant of Indexed-Sequence states that the A
Index must be greater than or equal to zero and less than or equal to the N
length of the Base. ®_
The definition of a data plan, such as Indexed-Sequence, automatically ;:_
defines a corresponding collection of input/output specifications for the stan- e
dard data structure accessors: N
’
. . . \
o A constructor, which takes an instance of the appropriate type for each - -
of the roles, and produces a new instance of the data plan with those 2. !
parts. A precondition of this operation is that the inputs satisfy the -
invariant of the data plan. o
o A selector for each role, which takes an instance of the data plan. and N
returns the corresponding part. - A
e An alterant for each role, which take an instance of the data plan and an e
instance of the appropriate type for the role, and destructively modifies NS
the instance of the data plan by replacing the corresponding part with sy
the new part. A precondition of this operation is that the new part ; '
together with the old parts for the other roles satisfy the invariant of A
the data plan. Y
The naming conventions for these accessors, their inputs, and their outputs. ;'._:
are illustrated in Figure 23. j.f__'
.
Implicit Accessors D
o
In general, a hierarchical plan may have a mixture of data and computation ‘f.'-
roles. Figure 24 shows an example of a hierarchical plan. Bump-and-Upnate, -:ﬁ
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Figure 268. For a data plan, D, with roles ..., X, .

47

!

select-D-X

select-D-X

!

.., this figure shows how each

possible arrangement of data flow to a single role (on the left) is translated into
explicit accessors (on the right). See Figure 27 for more general case.

ol ‘ -. u' -l' > n"? .r".r Ea A J' Lo J..J'\-(\_d‘\-‘,‘l'_-(_--"xvl'\-',\'-". Tt .

) T
- o™y e . 2™ e g

Sk AS S

545

S S AAANY K

~» y
LA

-~

P

AN TN

a2 e s

N . ]
RN “l._ I’

Ty

« {r"ll(

[ur

'
]



R R R L . Y R T T e TR O T TP R N DL u » .\b " L - .‘ ne - ;-I\‘.A PRI .1- > .r‘\‘.r .J'-‘.-
» [
J *
r)
¥ 4
. ¢
’ -~
) ~‘)-> '
: , T e L 5
A 48 THE PLAN CALCULUS A F
s n
!

: e v :

’ l_ __] l .

: IR
[ ...1..-l... >

: = e 3
. L_ - _J select-D-X ‘

|
- —

| _
“ l_ ?_ __? _l r l !{:.__;.

' ...l...l...

“ r_ - _] make-D
LN ] LN N ] (X N ]
. L I T — :
select-D-X select-D-Y

b !

A

Figure 27. For a data plan, D, with roles ..., X, .... Y, ..., this figure shows
how various combinations of data flow to multiple roles (ou the left) is translated
into explicit accessors (on the right). See Figure 26 for simpler cases.
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SIDE EFFECTS 49

which has the data plan Indexed-Sequence as a subplan (twice). This plan
expresses the clichéd pattern of operations on an indexed sequence in which
the index is incremented and a new term is stored at that location in the
sequence, as for example, in the following code:

(DEFSTRUCT INDEXED-SEQUENCE BASE INDEX)

(LET ({I (1+ (INDEXED-SEQUENCE-INDEX Q)))
(S (COPY-SEQ (INDEXED-SEQUENCE-BASE Q))))
(SETF (ELT S I) ITEM)
(MAKE- INDEXED~SEQUENCE :BASE S :INDEX I))

Notice that the Bump-and-Update plan is purely functional, i.e., there are
no side effects. New-Term (the type of the Update step) is a predefined in-
put/output specification associated with the primitive data type Sequence—
it returns a copy of the input sequence, with one term changed. Since there
15 no sequence primitive in Lisp corresponding to New-Term, the code above
usecs a combination of COPY-SEQ and SETF of ELT to implement this operation.
A related version of this plan which uses side effects is discussed below.

Notice also that the selector and constructor operations in the code above
for Bump-and-Update do not appear explicitly as boxes in the plan diagram.
It is a convenient feature of plan diagrams that these accessors are implicit in
the way data flow is connected to the roles of a data plan. For example, the
version of Bump-and-Update in Figure 24 can be taken as an abbreviation
for the version in Figure 25, in which the accessors are made explicit. The
general rules for interpreting data flow involving data plans are illustrated in
Figures 26 and 27.

3.6 Side Effects

Side effects are modelled in the Plan Calculus by introducing input/output
specifications which destructively modify their inputs. For example, the de-
structive version of New-Term, called Alter-Term, has the same input and
output roles as New-Term. Its postconditions, however, specify that the Old
sequence is destructively modified to obtain the New sequence. (The formal
statement of this condition involves using a situational calculus for modelling
mutable objects—see [41, 42, 40].)

Figure 28 shows an example of a plan, called Destructive-Bump-and-
Update, mvolving side effects. This plan is the more common, destructive
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old:indexed-sequence

b | J L

N old-base: old-index:
o select-indexed- select-indexed-
e sequence-base sequence-index

‘.,
Xa; '."-’l.’ Y
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bump:
oneplus
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alter-term
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alter-indexed-
sequence-index
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f-!:_{k 3,

destructive-bump-and-update

'5

Figure 28. The destructive version of Bump-and-Update.
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RECURSIVELY DEFINED PLANS 51

version of Bump-and-Update, corresponding to the code below. (Cross-
referencing between the destructive and non-destructive versions of speci-
fications and plans is part of the library structure [39).)

DN L o ot A SO A ) AT

(LET ((I (1+ (INDEXED-SEQUENCE-INDEX Q))))
(SETF (ELT (INDEXED-SEQUENCE-BASE Q) I) ITEM)
(SETF (INDEXED-SEQUENCE-INDEX Q) I))

Notice that the plan diagram for Destructive-Bump-and-Update has ¢x-
plicit accessors, such as Alter-Indexed-Sequence-Index, for the parts of the
indexed sequence. The abbreviated data flow notation for data plans de-
scribed above cannot be used in plans with side effects because the correct
expansion of the abbreviations in the presence of side effects requires non-
local reasoning. For example, in Destructive-Bump-and-Update, there is no
alterant for the Base of the indexed sequence, because the destructive mod-
ification of the sequence in the Update (Alter-Term) step also achieves a
destructive modification of the whole indexed sequence of which it is a part.

In the Plan Calculus, side effects arise only in connection with the de-
structive modification of arrays, records, and other mutable data structures.
Most of the side effects in conventional programming languages, namely as-
signment statements, are replaced by the use of data flow in the Plan Calcu-
lus. (An exception is the use of global variables, whose current value is best
thought of as part of the state of the system. These are modelled using the
primitive mutable data plan, Cell, which has a single role, called Contents.)

In general, reasoning about side effects can be quite complex, especially
il mutable objects may overlap (see [53, 54]).

3.7 Recursively Defined Plans

Hierarchical plans can be recursively defined. i.e., the type of one or more
of the subplans can be the same as the tvpe of the plan. For example,
Figure 29 shows the recursive data plan defining the standard list and binary
tree abstractions.

Recursive computations are also represented using recursive plan defi-
nitions. For example, Figure 30 shows the recursively defined plan, called
Bintree-Enumeration, for enumerating (visiting every node of) a binary tree.
In the usual Lisp implementation of binary trees as cons cells, the following
code s an implementation of this plan.
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59 THE PLAN CALCULUS

"

f

(DEFUN ENUMERATE (TREE) .-

(UNLESS (ATOM TREE) he

(ENUMERATE (CAR TREE)) -

(ENUMERATE (CDR TREE)))) -3

=

Notice, however, that this code makes an ordering commitment that i« .
not required by the Bintree-Enumeration plan. In this code, the nodes of b
the tree are walked in left-to-right order (assuming CAR corresponds to Left

and CDR to right). The Bintree-Enumeration plan is more general—it does ey
not force the traversal to occur in any particular order. An advantage of the ::
Plan Calculus over conventional program text is that it allows the expression :‘C
of more general clichés, such as this. Furthermore, to constrain the Bintree- »
Generation plan to the traversal order used in the code above, all that is o
required is to add a control flow arc from Continue-Left.End to Continue- -:::-
Right.Exit.
P-.
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r— o RN
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Figure 29. Two examples of recursively defined data plans. Note the use of
disjunctive types.
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4

exit:test-atom

F | T

p—

=

4 4 4 4

bump-left: bump-right:
select-bintree- select-bintree-
left right

continue-left: — 1 T I_' — | ™ continue-right:
bintree- { bintree-
cnumeration | ] | l | enumeration 4
| ' o — | |
I
e e T B e e I
| L |
|._ _::— _J l__ _—::_ __I

w

1T

end:join

y
F

bintree-enumeration

Figure 30. The recursive definition of the plan for enumerating a binary tree.
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Figure 31. Iterative (tail-recursive) plan for enumerating a list.
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oy
Iterative Computations ';:
4
[terative computations are represented in the Plan Calculus by recursively :.:
defined plans. For example, Figure 31 shows the plan for enumerating the el- A
ements of a list. In the standard implementation of lists in Lisp, the following o
. . . . . *
code is an implementation of this plan. o
S
A
(LOCP "
(IF (NULL L) (RETURN)) ¥
(CAR L) e
o
(SETQ L (CDR L))) N
This is the familiar CAR, CDR, NULL cliché that appears in several different .~
syntactic forms in the hash table example of Section 2. This cliché can )
alternatively be coded in the following recursive form, which mirrors more L
closely the structure of the plan in Figure 31. O
.
LS
(DEFUN ENUMERATE (L) >
Ok
s (WHEN L ﬁ:
a, (CAR L) 2
(ENUMERATE (CDR L)))) l
The two versions of the code above are computationally equivalent. In 'i, :
both cases, the amount of memory used in the computation does not need to -::-
grow with each repetition of the body. (It is a defect of some compilers and e
iuterpreters that these two versions are not exectuited in the same way.) A »
recursive definition that corresponds to an iterative computation is often re- A
ferred to as tail-recursive. Although iterative computations are often loosely N
referred to as “loops”, the essential characteristic of iteration is not the ex- o)
istence of a cycle in control flow, but rather, the fixed space requirements of RN
the computation.” »
The difference between a singly-recursive plan that gives rise to an iter- D,
ative computation, and one that gives rise to a recursive computation has :';
to do with whether there are any operations to be performed “on the way o
up”, i.e., after the recursive invocation. This point can be illustrated by ~
comparing plans for the recursive versus iterative computation of factorial. | B
A plan for the recursive computation of factorial is shown in Figure 32. s
This plan corresponds to the following code. e
e
"For a further discussion of the relationship between iteration, recursive definition, and NN
looping constructs, see (1], pp. 32-33. 7.‘
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end;join

'

recursive-factorial

—

Figure 32. Linear recursive plan for the computation of factorial.
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- test:equal-one
AN
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! bump: accumulate: ‘
" oneminus times
-_5' continue: r—— - 7
iterative-factorial- | I
Y body A /
3 l | ==
':‘- - "\ | . ':
-3 |
¥ | }
2 l
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. | |
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¥ o ' ° r————- l
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-
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;:: end:join .
o + ;
iterative-factorial-body !
_;: Figure 33. lIterative (tail-recursive) plan for the computation of factorial. Note 3
-:: that an auxiliary plan definition (not shown here) is required to specify initializa- g
- tion of the accumulated product to 1. \
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(DEFUN FACT (M)
(IF (= N 1)
1
(*+ N (FACT (1- N)))))

Note that the multiplication (Accumulate) step in this plan requires mput
from the end of the recursive invocation, and therefore must come after the
recursion. This computation is not iterative, but linear recursive---memory
grows linearly with the number of repetitions of the body.

A tail-recursive plan for the iterative computation of factorial is shown
in Figure 33. This plan corresponds to the following recursive definition.

(DEFUN FACT-ITER (N F)
(IF (=N 1)
F
(FACT-ITER (1- N) (* N F))))

Factorial of n is computed by calling FACT-ITER with the accumulated product
(F) initialized to 1.

(DEFUN FACT (N)
(FACT-ITER N 1))

This can alternatively be coded as a loop, as follows.

(DEFUN FACT (N)
(LET ((F 1))
(LoOP
(IF (= N 1) (RETURN F))
(SETQ N (1- N))
(SETQ F (= N F)))))

Notice that 1n the plan in Figure 33 there are no computations to be per-
formed after the recursive invocations. (Joins do not count as computations.,
but are really part of the data and control flow constraints.)

Another example of a tail-recursive plan is the Lincar-Scarch plan in
Figure 11, which captures the linear search cliché used in the hash table
example. A taxonomy of iterative clichés has been developed by Waters [50]
and elaborated by Rich [39].
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3.8 Overlays

Programming knowledge includes understanding many kinds of relationships
between plans. One important kind of relationship is how an instance of
one plan can be viewed as an instance of another. Overlays are the general
facility in the Plan Calculus for representing such shifts of viewpoint. Ex-
amples of overlays given below capture the common programming notions of
implementing a specification, data abstraction, and optimization.

Implementing a Specification

Figure 34 is an example of a simple overlay representing implementation
knowledge. The right side of the diagram is the Absolute-Value input/output
specification. The left side of the diagram is the plan, Compute-Absolute-
Value, which tests whether a number is negative and, if so, negates it. This
overlay represents the fact that the Compute-Absolute-Value plan is a correct
implementation of the Absolute-Value specification. (A statement of the cor-
rectness conditions is given below.) Notice the distinction being made here
between the specification for absolute value, and one way of computing it,
even though these two are very close in this example. Although Compute-
Absolute-Value is the most obvious way of implementing Absolute-Value,
there are other possible ways—for example, squaring the number and then
taking the square root. Each way of implementing Absolute-Value is repre-
sented by a different overlay, all of which have the same right side.

In addition to a left and right side, an overlay diagram also includes a
set of hooked lines, called correspondences, which identify the corresponding
objects in the two points of view.® In Figure 34, for example, the correspon-
dences identify the input of the absolute value specification with the input
of the test of the implementation plan, and the output of the absolute value
spectfication with the output of the join of the implementation plan.

FFormally, an overlay defines a mapping from the set of instances of the
left side plan (the domain) to the set of instances of the right side plan
(the range). There may be different overlays with the same domain and/or
range. In order to be correct, the mapping defined by an overlay must be
single-valued, total and onto.?

5The idea of correspondences was stimulated in part by Sussman'’s “slices” [57], which
he used to represent equivalences between electronic circuits,
*A mapping is onto iff each element of the range is the image of some element of the
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Figure 34. Overlay for an implementation of absolute value by testing and
negating.
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The single-valued condition guarantees that the implementation process
loses no information, i.e., for a given overlay, the specification can always be
recovered from the implementation. The mapping mnay, however, he many-
to-one, so that the implementation typically is not uniquely dctermined by
the specification.

The total condition guarantees that each implementation instance corre-
sponds to some specification. (Typically, this is achieved by restricting the
domain of the overlay until this condition is satisfied.)

Iinally, the onto condition guarantees that each specification is imple-
mentable.

The logical sublanguage and the formal semantics of the Plan Calculusx
provide the basis, in principle, to formally verify all of the overlays described
in this paper. An automated proof system which can be used for this task has
been implemented by Feldman and Rich [44, 15). Thus far, however, these
conditions have only been used as an intuitive guide to writing overlays.

‘. Using Overlays in Analysis and Synthesis

The knowledge encoded in an overlay can be used in both analysis and syn-
thiesis of programs. In analysis by tnspection, the left side of an overlay is
matched against the plan representation of the program under analysis. If
a match is found, then the part of the plan matching the left side of the
overlay can be replaced by the right side of the overlay. The correspondences
provide the information needed to connect the right side of the overlay with
the appropriate parts of the surrounding plan. (See example in Figure 35.)

The repeated application of this recognition process can be thought of
as a kind of parsing, where each overlay defines a grammar rule. (The sides
are reversed: The right side of the overlay corresponds to the reduced side of
the grammar rule; the left side of the overlay corresponds to the expansion
of the rule.) Note that this grammar will typically be ambiguous,'® because
there may be several overlays with the same left side, and also because the
parts of a plan may often be grouped in several different ways. Wills [G3)
has constructed an automated system which performs analysis by inspection
using a graph-parsing approach.

domain.
A grammar is ambignous iff some sentences in the language do not have a unigue
derivation.
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Figure 35. The example overlay at the top of the figure is shown being used in
analysis and synthesis. In analysis by inspection, the left side of the overlay is
recognized in the larger plan at the lower left of the figure. The part of the Lo
plan matching the left side of the overlay is highlighted in bold. It is replaced In
the right side of the overlay as shown. In synthesis by inspection, this process is
reversed.
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Figure 36. An example of matching a plan in which copying is required before
replacement. The part of the larger plan matching the left side of the overlay
in Figure 35 is highlighted in bold. Notice that A is copied first, and then the
watched part of the plan is replaced by the right side of the overlay.
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o
-5 In synthesis by inspection, the right side of an overlay is matchied again-
A the plan representation of the current synthesis state. If the rvight «idc
E the overlay is a single box, as in the case of implementation ovelays, i
AL this is trivial. We will see below that the right side can also be a pla.
A The part of the plan matching the right side of the overlay is repla o
::: the left side of the overlay, again using the correspondences to get the right
::j connections. (See Figure 35.) In the grammar metaphor. svuthesis by i
X spection corresponds to running the same grammar as a generator. A systeq
. which supports a kind of synthesis by inspection has been implemented by
. Waters [61].
~ Note that in the process of matching and replacement. parts of the
\" matched plan may need to be copied before replacement is made. Tlie parts
o> of the matched plan that need to be copied are any operations or tests whose
> output has data flow going outside the matched area. and for which there is
s no corresponding output on the other side of the overlay. Figure 36 shows an
:,»': example of when copying is required in the use of an overlay in analysis by
f_: inspection. The same copying would be required in the synthesis direction f
" the same plan were the right side of another overlay.
- Data Abstraction ‘
> Data abstraction is represented in the Plan Calculus by overlays between
> data plans. The data plan on the left side of the overlay is what is typically
= called the concrete (or implementation, or represeutation) data typer the
) data plan on the right side of the overlay is the abstract data type. As with
> overlays in general, a data overlay must define a single-valued, total and onto
:: mapping from instances of the concrete data type to instances of the abstract
N data type. This mapping is typically called the abstraction function i the
~ data abstraction literature (e.g.. [30]).

- Only the domain and range types of a data overlay can he tndicated
" in plan diagrams. The definition of the abstraction function requires the
P logical/mathematical sublanguage. For exanple, Figure 37 shows the data
- overlay, Indexed-Sequence-as-List, which represents one way of implementing
¢ a list using an indexed sequence. The abstraction function for Indexed-

i Sequence-as-List is defined as follows: The head of the list corresponds 1,
- the terin of the base sequence indexed by the index. The tail of the L
k- is recursively defined as the list implemented by the indexed sequence witi
N same sequence and one minus the index. The empty list (nil) corresponds 1o
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l tail:list U null
| :_ |
b : j d N .
A skgﬁgnce }Jlxlte‘é’far l head:any | O b |

indexed-sequence l list

indexed-sequence-as-list

Figure 37. An example of implementation knowledge involving data abstraction.
The data overlay, Indexed-Sequence-as-List, specifies how to implement a list using
a sequence and an index. Only the domain and range are indicated in the plan
diagram.

the indexed sequence with index zero.
. Data overlays are typically used to define other overlays. For example,
Q. [Figure 38 shows the definition of an overlay which describes how to imple-
ment the Push!! operation on a list, when the list is implemented as an
indexed sequence (according to Indexed-Sequence-as-List). The left side of
this overlay is the Bump-and-Update plan introduced earlier. In this im-
plementation, the Old and New indexed sequences of the Bump-and-Update
plan correspond to the Old and New lists of Push, respectively.!? The object
which becomes the new term in Bump-and-Update corresponds to the object
beiyg pushed onto the list.

. Notice that two of the correspondences in the diagram for Bump-and-
Update-as-Push in Figure 38 are annotated with the name of the data over-
lay Indexed-Sequence-as-List.  This means that the Old indexed sequence
of Bump-and-Update viewed as a list according to Indexed-Sequence-as-List
corresponds to the Old input of Push, and similarly for the New roles. This

N The postconditions of Push state that the head of the New list is equal to the Input,
and the tail of the New list is equal to the Old lhist.

"ltecall that the plan diagram shown for Bump-and-Update in Figure 38 is actually
an abbreviation for the version with explict accessors shown in Figure 25. With explicit
accessors on the left side of overlay, the correspondence involving the Old indexed sequence
would connect to the input to the selectors at the top of the plan; the correspondence
involving the New indexed sequence would connect to output of the constructor at the
Lotton.
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old:indexed-sequence |

’ base:

index:
sequence

integer

indexed-sequence-as- list

4
bump:
oneplu ) ]
old:list input:any
{_1)/ l push
| 4 y I
update: new:list
new-terin l
l—— e e e om— e — -—-l |
X L indexed-sequence-as-list
l base: index:
I sequence integer
- - = — — _
new:indexed-sequence |
bump-and-update I

bump-and-update-as-push

Figure 38. The Bump-and-Update-as-Push overlay specifies Low to implement
the Push operation using the data abstraction Indexed-Sequence-as-List (sce Fio-

ure 37).
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lhelling convention is quite general. Any correspondence can be labelle
with the name of any function having the appropriate domain and rang
This meaus that this function is applied to the object on the left to ol
tain the corresponding object on the right. One can think of an unlabellc
correspundence as meaning the identity function.

Notice that using data overlays, the same data abstraction can be impl
mented differently in different contexts; this is awkward in some prograr
ning languages.

Finally, notice that the implementation knowledge in Figure 38 is {
the nost abstract case, namely an unbounded list implemented using :
unbounded sequence, without side effects (the input and output lists of Pu:
are not identical; New-term is the non-destructive operation on sequences
A plan library would also include overlays between versions of these plans
which the Push operation can cause overflow, the base sequence has a fix
length. and various operations are destructive.

Optimization

The most general form of overlay has a non-atomic plan diagram on ea
side. Such overlays are most often used to capture optimization knowled;
For example. Figure 30 shows an overlay having to do with optimizing
certain pattern of operations on a list. The right side of this overlay is a pl
m which an object is pushed onto a list, the list is sorted, another objc
is pushed onto the sorted list, and then it is sorted again. This pattern
operations can be optimized as shown by the plan on the left side of t
overlay, in which the first sorting operation is omitted. One can think of t’
overlay as embodying a small lemma in the theory of lists and sorting.
One would not particularly expect a programmer to write code matc
g the right side of this overlay. However, patterns requiring optimizati
can casily arise in the process of automated synthesis, when higher le
opcerations are expanded iito implementations. For examiple, a simple imy,
micntation for adding an object to a sorted list is to push the object onto t
st and then sort. Two such operations on the same sorted list implement
this way would give rise to the pattern on the right side of this overlay.
[sing an overlay such as Figure 39 in the synthesis direction. i.e., mat
ing the rnight side and replacing it by the left side. amounts to applying
optinaization. Using an overlay such as Figure 39 in the analysis directi
Lo matehing the left side and replacing it by the right side, amounts
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Figure 39. An example of an overlay encoding optimization hnowledge. | e
right side of the overlay is the unoptimized form: the left side s the optimized
form. The Sort-List specification takes as input a list and an order predicane, bis
output is a list with the same elements as the input list, sorted according 1o the

\J- .,

order predicate.
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. \‘
“undoing” an optimization. It is often necessary to undo optimizations in N
order to facilitate further recognition. N
In the grammar metaphor, an overlay with non-atomic plans on both the N
left and right side corresponds to a context-sensitive grammar rule. Undo-
" img optimizations as part of recognition is therefore an inherently expensive N
) .
DIOCess, X
v

»

4
]
. 3.9 Summary f'
o
This scction summarizes the structural sublanguage of the Plan Calculus s,
with a formal definition of its syntax. Note that the syntax of plan diagrams o'
allows plans that are not semantically well-formed, for example, for which NG
no possible executions exist (see [40, 41, 42] for more on semantics). :'
We begin with a set of primitive types, which are in the language. These -?_
types provide the primitive data vocabulary, such as Integer, Sequence, and R
Set. out of which specifications are built. The primitive type Situation is >
~ used to model control flow and side effects. ::
‘. There are two kinds of composite structures in the language: specifica- :
tions and overlays. '_
) A specification is composed of a labelled tuple and a set of labelled edges. -~
. A labelled tuple is an tuple in which the components are selected by arbitrary o
S distinet symbols (labels) instead of numbers. The set of valid labels for '—
the compouents of a specification are called its roles. The components of a ;
5 specification are either specifications or primitive types. o
: The edges of a specification are pairs of paths in the specification. A path 4
i a specification, A, is defined recursively as follows: o~
3
If ris a role of A, then ris a path in A. '
: It B is the component of A selected by r, and p is a path in B, ::::
X then r.pis a path in A, :::
Giiven these definitions, the terminology of plan diagrams introduced in e
the preceding sections arises out of classifying specifications according to 3
R their components, as follows. -
An input/output specification is a specification with exactly two Situation ::C
components.  These are the entry point and exit points roles, which are N
labelled by convention In and Out. The remaining roles are partitioned iiito ?"
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two disjoint subsets, called the inputs and the outputs. There ave no edues
in an input/output specification.

A test specification is a specification with exactly three Sitiarion oo,
ponents. These are the entry point, and the success and failure cxit -0
which are labelled by convention In, Succeed, and Fail. respectiven o
remaining roles are partitioned into three disjoint subsets. called the Lopuis.
the success outputs and the failure outputs. There are no edges inoa tes
specification.

A data plan is a specification, all of whose components are cither primirive
data types (i.e., primitive types other than Situation) or data plan~. s
are no edges in a data plan.

A plan (the general case) is a specification. all of whose component< an
either input/output specifications, test specifications, primitive data tyvpes,
or plans. The edges in a plan are labelled to indicate whether they are control
flow or data flow. Data plans are a special case of plans. The term temporal
plan is sometimes used to distinguish plans which are not data plans. ic.
which include at least one input/output or test specification.

An overlay is composed of a pair of specifications and a sct of lahelled
edges. The edges of an overlay are pairs of paths, in which the first elenent

of each pair is a path in the first specification and the sccond element of cacly
pair is a path in the second specification. The edges of the overlay are called
correspondences, and are labelled with the name of the function used to mayp
objects from the left side to the right side of the overlay.
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4 Conclusion

This section discusses the relationships between the Plan Calculus and other
formalisms, reviews some of the limitations of the Plan Calculus, and sum-
marizes further work to be done.

4.1 Relation to Programming Languages

An often asked question is: Is the Plan Calculus (just) another (very high
level) programming language? As with many such questions, the heart of
the answer lies in defining the terms. In this case, it depends just what is
meant by “programming language.” Modern programming languages have
two essential purposes:

¢ To describe computations precisely enough to be executed by a ma-
chine,

e To serve as a communication medium between program writers and
human readers.

I contrast, the two essential purposes of the Plan Calculus are:

¢ To describe programming clichés in a canonical, easy to combine, and
language-independent form.

e To serve as a medium for automated manipulation of programs.

As we will see, these respective purposes are in some ways compatible, and in
other ways conflicting. The answer to the question is therefore not a simple
YOS or no.

(‘onventional programming languages force the programmer to provide
enough detail so that a simple local interpreter (e.g., hardware, perhaps
with au intermediate compilation step) can execute the code. Unfortunately,
much of this detail. such as the variety of special forms used for binding
variables, looping. conditional branching, etc., is often irrelevant to respect
to the algorithmic content of the code. As discussed in Section 3.1, this aspect
of conventional programming languages conflicts with the canonicalness goal
of the Plan Calculus.

The goals of serving as a human communication medium and serving as
a medium for automated manipulation can also conflict. For human com-
munication, a eritical restriction is the fact that information must ultimately
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be laid out on a two-dimensional structure (i.e.. on the retina), 'nocontrest
automated manipulation systeins have no such inherent topei coryt vy

tion. It is possible (and often desirable) in such systems to hao vy Lzt

interconnected information structures in which many Kinds of uidoiiai o
are localized at a single point.

As discussed in Section 3.1, the graphical nature ol the Pian Cadowis s
motivated by a desire for ease of manipulation by an automated toonl A~
plan diagrams grow in size, they very quickly become hard tor s 1
understand visually. Although it may turn out that the Plan Caleulus is
good starting point for a graphically-oriented human comnnuvcation envi:
ronment, how to best use graphics for programming is still an opest rescarch
question.

Wide-Spectrum Languages

Recently, the notion of programming language has been extended to inchide
so-called very high level languages (VHLL’s). Some of these VHLL's are ¢xe-
cutable, although not by a simple local interpreter. and not very efticientiy.
Others are really specification languages. in the sense that the compiler is
making significant implementation decisions, such as the choice of data struc-
tures and algorithm. Furthermore, most VHLL's are also wide spectrum. i.c..
they include a conventional high-level language as a sublanguage.

The Plan Calculus is also a wide-spectrum langnage. The input/output
and test specifications used in a given plan may correspoud to operations
typically available in a conventional programming language, or they may be
much more abstract. To illustrate this point, consider how one translates a
program from a conventional high-level programming langnage into the Plan
Calculus. First, the primitives of the programming language are divided into
two categories:

o The “conncctive tissue” primitives. such as PROG, COND. SETQ. GO. aud
RETURN in Lisp, which are concerned solely with achioving data ol
control flow.

e The primitive operations and tests, such as CAR. CDR. PLUS. NULL. MINUSP.
and so on, in Lisp, which perform actual computations.

Each primitive operation or test is translated nto the conesponding
put/output or test specification. The connective tissue primitives are then
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W
Y
}-',t translated into the pattern of control flow arcs, data flow arcs, and join spec-
ol ifications between the boxes of the plan.
In summary, the answer to the question, Is the Plan Calculus a program-
- ming language?, is Yes the Plan Calculus is a language with the expressive
‘5'_" power of a wide-spectrum, very-high-level programming language, but No it
::: is not necessarily appropriate for programmers to use directly.
L
)
The Evolution of Languages
; ::\ A sccond relationship of this work to programming languages is the role of
) 2 clichiés in the evolution of languages. Typically, part of the advance from
__\.": a lower to higher level language involves moving an entire class of decision-
P2 making from the realm of the programmer to the realm of the compiler. For
xS example, in moving from machine language to high-level languages, the task
-2 of register allocation was moved to the compiler. As part of moving from
" high-level to very-high-level languages, an attempt is being made to make
‘ efficient data structure selection the responsibility of the compiler.
- ~.‘- Another part of language evolution, however, involves identifying clichés
v (common patterns of usage) in the lower language, and absorbing them into
v the syvntax of the next higher language. For example, the common patterns
«, 7 . . . . «
s of jumps and tests used to perform iteration in machine language became
o the various looping forms of high-level languages. As part of moving from
oy high-level to very-high-level languages, an attempt is being made to extend
” the syntax of languages to support common clusters of operations.
. From this point of view, what it means to be a cliché is not absolute, but
_::'_ rathier what a concept is called between the time it is identified as a common
N usage in the current language and the time it gets absorbed into the next
A ) . .
.- higher level of language. However, this evolutionary process does not stop at
5 the next level —as long as a language is used, new clichés will arise.
I
b _::,
e .
- 4.2 Other Formalisms
N
X
Past efforts to codify programming knowledge have used one of the following
N formalisms:
.'f
L
v ® LI hemas (¢
- program schemas {19]
"
.‘,‘; . -
- e program transforme tions [1, 10, 12, 55]
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e program refinement rules (5]

o formal grammars [47]

Although each of these representations has heen found useful in cortann oy
plications, none combines all of the important features of the Plan C4'ent v
Program schemas (incomplete program texts with constraints on the uu-
filled parts) have been used by Wirth [63] to catalog programs Lased on re
currence relations, by Basu and Misra [8] to represent tvpical loons for whici
the loop invariant is already known, and by Gerhart [19] and Mista "37] 1o
represent and prove the properties of various other common forms. U fort,
nately, as illustrated by the linear search example in Section 3.0 the svintax

of conventional programming languages is not well suited for the kind of

generalization needed in this endeavor.

Programming languages descended from Simula [13]. sucli ax CLU 3]
and Alphard [52], provide a syntax for specifving standard forms. suclh as
linear search, in a more canonical way. However, there are two more fuy
damental difficulties with using program schemas to represent standard pro
gram forms, which Simula and its descendants do not solve. First. programs
(and therefore program schemas) are not in general easy to combine, nor are
they additive. This means that when you combine two program schemas,
the resulting schema is not guaranteed to satisfy the constraints of both of
the original schemas, due to such factors as destructive interactions between
variable assignments. Second, existing programming languages do not allow
multiple views of the same program or overlapping module hicrarchies. The
reason for this is that, from the standpoint of these languages, a prograin is
still basically thought of as a set of instructions to Le excecuted, rather than as
a set of descriptions (e.g., blueprints) which together specify a computation.

The most common approach for represeuting implementation relation:
ships between clichés is to use knowledge-based! program transformation
and refinement rules [5]. The major deficiency of these formalisios. as conn
pared to overlays in the Plan Calculus, is their asymmetey hetween analvsis
and synthesis. An overlay is made up of two plans, either of which can he
used as the “pattern.” In a typical program synthesis step the pight side plan
is used as the pattern and the left side plan is instantiated as a further -
plementation. Conversely, in a typical analysis step. the left <ide plan serves

13As opposed to the folding-unfolding and similar transformations of Burstall and Dar
lington (10]. which are intended to be a small set of very general transforinations it nust
be composcd appropriately to construct mtuitively mieaningfub pplene ptati o steps
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as the pattern and the right side plan is instantiated as a more abstrrct
description. With program transformation and refinement rules, this sort
of symimetric use is not possible, since the right side is often a sequence of
substitution or modification actions to be executed, rather than a declarative
description that can be used as a pattern.
Another formalism used for codifying programming knowledge is formal
; (string) grammars. For example, Ruth [47] constructed a grammar (with
global switches to control conditional expansions) which represented the class
N of programs expected to be handed in as exercises in an introductory PL/1
programming class. This grammar was used in a combination of top-down,
bottom-up and heuristic parsing techniques in order to recognize correct
! and near-correct programs. Miller and Goldstein [34] also used a grammar
formalism (implemented as an augmented transition network) to represent
classes of programs in a domain of graphical programming with stick figures.
‘ The major shortcoming of these grammars is that they are string-based and
, therelore too close to the programming language.

] “ 4.3 Limitations of the Plan Calculus

This scction outlines a number of known limitations of the Plan Calculus, and
suggests some directions for their remedy. The Plan Calculus is just a first
step in developing knowledge representations for the programming domain.

Other Kinds of Knowledge

There are at least two fundamental kinds of knowledge used in the program-
; ming task that the current Plan Calculus has no facilities to express.

One such kind of knowledge concerns the performance properties of al-
gorithms and data structures. This kind of knowledge is used, for example,
. to choose between alternative implementations of a data abstraction or in-
- put/output specification. The most straightforward idea for adding this kind
. of information to the Plan Calculus would be to simply annotate plans with
explicit performance statements, such as “this is a quadratic algorithm™, and
so on. However, this approach only scratches the surface of the issue. In or-
der to make effective engineering trade-offs, a formal language is also needed
for characterizing the distribution of input data to a program. Going even
deeper, a representational framework is needed within which programs can
he analyzed to identify bottlenecks, and within which potential optimizations
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can be evaluated and compared. Recent work in this area by Kant 2
starts with a program representation similar to the Plan Calculns.

A second kind of knowledge that figures prominently i many progra:.
ming tasks concerns the structures and constraints of the apphcation duinaiin.
For example, Barstow [6, 7] has studied in detail the role of matheroi.
models of physical processes in the synthesis of oil well log interpretation
software. Since programs can be written in any domain, the problen: of ren

»

AT
[
PG P

resenting domain knowledge in programming is in principle no less ecner!
than the general problem of knowledge representation. The chiallenge from
the point of view of the programming task, however, is how domain iow,
edge interacts with “computer science knowledge™ (algorithms. data struc
tures, performance properties, and so on). Neighbors [33]. for exaiuple. fs
developed a transformation-based architecture in which domain descriptions
can be formalized and combined with software itnplementation knowledge.
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Non-Local Flow

The Plan Calculus also has limitations in expressive power within the Kiad
of knowledge that it does address. Consider a program in which data flow is
achieved by one component updating a global data base and another con
ponent querying it. Using the Plan Caleulus straightforwardly, the cntie
data base would have to be both an input and output to every module that
updated it, and an input to every module that queried it. This representa-
tion does not allow for the fact that certain modules may only produce aid’
consume certain kinds of data, and that the intended dava flow wraph v
therefore be significantly smaller than the straightforward data tlow graple
What is suggested to solve this problem is a use of overlayvs o which a mn
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table object (such as a data base) is conceptually partitioned into severad
separate objects, each with a separate data flow.
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A similar problem arises with the straightforward nse of contvol iflow
the Plan Calculus to model THROW 1 Lisp. or interrupt facilities o othc

P
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languages. In this case, the straightforward control flow eraph regiites o
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corresponding control flow exit from every module enclosing the pont of ihe
THROW (or interrupt signal). Technically. this makes everyv endlosine modale
into a test specification. Conceptually, however: this scems wrone Whae s
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needed is some way (again perhaps using overlavs) of viewine the moaoad”
control flow separate from the interrupt-hased control™!

e

»
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HMHarel's statecharts [23] provide a nice solntion 1o this problene withng a i sl
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. Figure 40. The two plan diagrams at the left have the same meaning. However, Ny
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J'I,
The data and control flow problems described above may be summarized 5}'
by observing that the current Plan Calculus is oriented toward representing o
the local flow of data and control. Both of the examples above are a kind of ::'_
non-local flow. ;

: Canonicalness :'.:
A desired property of the Plan Calculus is that there be a wiigue repie ,_\
sentation for each cliché. Since being a cliché is essentially an empirical. -
pre-theoretic notion, deciding whether this property holds is not a formally 0y
definable question. There is, however, a closely related formal property of y
the Plan Calculus which is also desired (and unfortunately, does not hold :::.
in certain cases): Syntactically distinct plans should also be semantically .
distinct. The reason for desiring this property is illustrated in Figure 40. %

As pointed out in Section 3.3, the two plans on the left of Figure 40 have !
the same meaning, due to the transitivity of control flow. This is more than -
just a problem of elegance——the same syntactic manipulation applied to cach -
plan can now result in two new plans with different meanings. as illustrated o
in the figure. Deleting the control flow arc between between I3 and (" in the - a7
top plan results in a plan in which C is unordered with respect to 4 and .,_,, !-
B. Deleting the same arc in the bottom plan results in a plan in which ' .
must still follow A. A similar problem arises with control flow arcs that are :::'.
redundant with data flow arcs. N

One solution to this problem is to canonicalize plan diagrams on the A
transitive closure of the control flow. Under this solution. oulv the Lottom L~
plan on the left of Figure 40 would be syntactically legal. A consequence of 7
this restriction is that it would be illegal to add a coutrol flow arc hetween 13 ;::';
and C to the plan in the top-right of Figure 40—one would have to first add <
the arc from A4 to " and then from B to (". Another way to guarantee this e
restriction would be to automatically update the trausitive closure whenever ..__
a new control flow arc is added. ::-‘.

An alternative approach to solving this control flow problent is to move :-':
control flow out of the structural sublanguage of the Plan Caleulus, and :::'
into the logical sublanguage. This is the approach taken in the niost recent -~
implementation of the Plan Calculus [13]. This approach takes advantave of ,—..'-_
facilities in the logical reasoning engine for efficiently maintainine trausitive o
relations. which are also needed for othier purposes. ::
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4.4 Further Work

This section describes further work by the author and others that extends
and builds upon the notions of inspection methods, clichés and plans. Some
of this work has already been completed and is therefore only summarized
here, with references to the full descriptions elsewhere. Current work in
progress and future directions are also described.

Libraries of Clichés

The most important next step in this work is to use the Plan Calculus to
begin in earnest the task of codifving programming clichés. The author has

compiled an initial library of several hundred clichés in the area of basic

techniques for manipulating symbolic data structures (see [39, 41]). This
library includes:

o data abstractions, such as set, graph, mapping, list, sequence, and tree.

e operation clichés, such as addition, deletion and associative retrieval in
a set, inverting a mapping, and modifying arcs in a graph.

e data structure implementation clichés, such as indexed sequence and
hash table.

e clich¢d algorithm fragments, such as searching, generating and accu-
mulating.

In addition to the various kinds of overlays between these clichés, the

library is organized taxonomically using two kinds of inheritance-like rela-

tionships: specialization and extension. Recalling that a plan is essentially

a set of parts with constraints between them, specialization corresponds to
adding constraints; extension corresponds to adding parts.

The contents of this initial library was determined primarily by the re-
guirement of giving a complete account of the design of the hash table ex-
ample of Section 2. Barstow and Green [5, 21] have codified a similar body

of clichés in this same general arca using a transformational formalism. One

direction to continue this codification is to deepen the coverage of the library
within the arca of basic techniques. For example, it might be productive to
work systematically through basic texts such as [27) or [2].
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Graphics
Programming

Statistical
Programming

Systems
Progremming

Input/Output Mathematical

Methods

Algorithms

Basic Techniques

Figure 41. A Venn diagram suggesting the overlap between programming clichiés
used in different application areas.

A second direction to continue the codification of clichés is to broaden
the coverage of the initial library toward more specialized application arcas.
Figure 41 suggests how this broadening might proceed from more genceral to
more specific clichés. The figure illustrates the relationship one would expect
to find between the clichés used in three areas of programming: statistics.
graphics, and systems. The intersection of all three areas iu tlie center rep-
resents basic programming techniques, where the initial codification cffort
has focused. The overlap between each pair of areas represcents clichés of
intermediate generality. The remaining part of each arca represents the most,
specialized clichés in that area.

The Logical Sublanguage

The logical sublanguage of the Plan Calculus comprises the preconditions.
postconditions and other logical statements which annotate plan diagrams.
This logical language has been implemented in a reasoning system called
CAKE [15, 43, 14]. CAKE supports a typed propositional logic with limited
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quantificational facilities.  The system includes a type inheritance lattic
and special procedures for reasoning with sets, equality and other operator
with common algebraic properties, sucli as transitivity, svinmetry, and so o1
Side effects are modelled in the language using a situational approach simile
to [il]

CAKE s a hybrid system in which manipulation of plan diagrams and re:
soning in the logical sublanguage are intermixed as needed. This 1s achieve
through an approach in which the formal semantics of data flow. control flo
and other syntactic structures of plan diagrams (see [10, 41, 42]) exist &
explicit logical assertions in the reasoning system’s database. For exampl
the semantics of a data flow arc is an equality between terms representing tl
appropriate ports. plus a partial order assertion between the correspondin

situations.

Teleological Structure

The logical sublanguage makes it possible to talk about an important kin
of structure in a plan, in addition to its control and data flow structure. Tt
teleological' structure of a plan is the set of logical relationships between th
preconditions and postconditions of its input/output and test specificatio
roles.

Figure 42 illustrates the concept of teleological structure with an abstra
example. The figure shows an implementation overlay between a plan wit
three roles, P, Q, R, and an input/output specification, S. A, A', B, £
cte, are formulae in the logical sublanguage, which form the preconditios
and postconditions of the various specifications, as shown. Data and contr
flow ares between P, Q. and K, are omitted.

I order for the overlay in Figure 42 to be valid. each postcondition of
must be implied by some postecondition of P, Q. or I?; and each preconditic
of 7., and I must be implied by either a postcondition of a preceding ste
or a precondition of 8.1 The pattern of these logical relationships provides
deeper characterization of the purpose of each step in a plan, than is provid
by control and data flow structure alone.

For example. we can see in Figure 12 that P is essentially a preparato
step all of its postconditions are prerequisites for later steps. @ and £,

PFrom the Greek teleos, meaning purpose. This terin is first introduced in [45).
" The possibility that a postcondition achieved by one step may be “undone™ by
subscquent step s taken care of mside the logie through the use of situations.
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; Figure 42. An overlay diagram illustrating teleological structure, i.e., implica-
tions between the respective pre- and postconditions.
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. the other hand, are main steps—each contributes to accomplishing part of
N the overall postconditions of S. (This vocabulary for describing steps of a
plan in terms of their purpose is due to Goldstein [20].)
Further understanding the role of teleological structure in program anal-
: ysis and synthesis is an important area for future work. For example, an
analysis of the teleological structure in Figure 42 suggests that step /2 may
" be replaced by a weaker specification, since postcondition H is not needed to
accomplish any part of S. In CAKE, teleological structure is represented by
the dependencies in a truth-maintenance system.

C The Programmer’s Apprentice

The work described in this paper has evolved within the context of a project
aimed at developing an intelligent, interactive assistant for software develop-

- ment, called the Programmer’s Apprentice. The Plan Calculus serves as the
2 “mental language” of the Apprentice.

! Plan diagrams were originally developed for use in the Apprentice by Rich
e .n and Shrobe [45] and later extended by Waters [58]. Overlays, the logical
) A4 sublanguage, and the formal semantics of the Plan Calculus were added by

- Rich [41]. The current implementation of the Plan Calculus in CAKE is only

the most recent in a series of versions that have been experimented with
over a period of years. As part of these experiments, modules have been
implemented to translate between the Plan Calculus and an assortment of
programming languages, including (subsets of) Lisp, Ada, PL/1, Fortran,
2 and Cobol.

. As part of the Programmer’s Apprentice project, prototype systems has
been implemented using the Plan Calculus to demonstrate both analysis and
synthesis by inspection.

Wills [63] has implemented a prototype analysis by inspection system that

first translates an input program into the Plan Calculus and then applies

a graph parsing algorithm developed by Brotsky [9]. The grammar used

¥ in the parsing is derived from Rich’s library of clichés for basic symbolic
programming techniques [41, 39]. As a way of communicating the results of

its analysis, Wills’ system produces a kind of program explanation. Figure 43 :

A shows the result of applying Wills’ program to the TABLE~LOOKUP function of o
" Section 2. Note that the convention in this explanation is that terms with -
‘ initial capitals are the names of clichés or roles; terms in all capitals are ::1
' identifiers in the Lisp program. ’jj
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(DEFUN TABLE-LOOKUP (TABLE KEY) N
(LET ((BUCKET (AREF TABLE (HASH KEY TABLE)))) i :
(Loop T
(IF (NULL BUCKET) (RETURN NIL)) KON

(LET ((ENTRY (CAR BUCKET))) :;:

(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY))) \'_”'.

(SETQ BUCKET (CDR BUCKET))))) N

[
TABLE-LOOKUP is an Associative Retrieval operation. \.:
If there is an element of the Set TABLE whose Key S
is KEY, then it returns it; otherwise it returns nil. . ".
The Key is extracted from an entry by the function KEY. TS

o
The Set is implemented as a Hash Table. L
The Hash Table is implemented as an Array of Buckets, RS
indexed by hash code. :f'
The Hash Function is HASH. ‘5' !
The Buckets are implemented as Lists. There are no 4
header cells. A Linear Search is used to determine :{:
whether or not there is an element with the given Key .
in the fetched Bucket, BUCKET. -'::
RN

Figure 43. Wills’ system analyzed the undocumented Common Lisp code above -.
and automatically produced an explanation of its implementation in terms of a PR
library of clichés. =
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FURTHER WORK

o
I

Define a linear-search program BUCKET-DELETE with
parameters BUCKET and KEY.
Fill the enumerator with a trailing-pointer-list-enumeration
of BUCKET.
Fill the search-criterion with (EQUAL (KEY (CAR LIST)) KEY).
Fill the action with a splice-out of PREVIOUS.

4

‘_9 (DEFUN BUCKET-DELETE (BUCKET KEY)
(LET* ((PREVIOUS BUCKET)
(LIST (CDR PREVIOUS)))
(Loop

(IF (NULL LIST) (RETURN NIL))

(WHEN (EQUAL (KEY (CAR LIST)) KEY)
(RPLACD PREVIOUS (CDDR PREVIQUS))
(RETURN NIL))

(SETQ PREVIOUS LIST)

(SETQ LIST (CDR LIST)))))

Figure 44. Waters’ system synthesized the Lisp code above from the description
of the clichés to be used.
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86 CONCLUSION Vs

Waters {61, 60] has implemented a prototype synthesis by inspection svs-
tem, called KBEMACS (for Knowledge-Based Editor in EMACS). KBEMACS
allows a programmer to construct and modify programs more quickly and
reliably than using a conventional program editor, by supportiug operation~
on a program in terms of clichés. For example, Figure 44 shows a sct o
commands given to KBEMACS that produces a version of the BUCKET-DELETE
program. The only difference between the version of BUCKET-DELETE produced
by KBEMACS and the version in Section 2 is the use of an unnecessary teny
porary variable, LIST. This is due to the fact that the algorithm KBEMACS
uses for achieving data flow using variables is not optimal.

Other Related Work

Program representations related to and derived from the Plan Calculus have
been used by others in the areas of program recognition [16]. programming
tutors [28], program translation [14, 62], algorithm design [26], debugging [51.
31], and maintenance [33]
Soloway and Ehrlich [56] have conducted a number of empirical stud-
ies with programmers which support the psychological reality of plans and .
clichés. c .
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